

Synchronization

Coordination of entities to achieve order in the time domain.

Color represents phase ϕ_i of entity *i*.

Adjustment of phases ϕ_i

Swarming

Coordination of entities to achieve order in the space domain.

(includes aspects of time)

Adjustment of *locations* \boldsymbol{x}_{i}

Synchronization and swarming

- Unified model
- Bidirectional coupling
- Emergence of space-time patterns

O'Keeffe, Hong, Strogatz: Oscillators that sync and swarm. *Nature Communications*, 2017

- 1 Theory of swarmalators
- 2 Robots that sync and swarm
- 3 Drones that sync and swarm
- 4 Take-away messages

Swarmalators

Synchronization

The *phases* ϕ_i of entities influence each other.

E.g.: Phases synchronize to a common value, or "desynchronize" to differing values (splay states).

Swarming

The *locations* \mathbf{x}_i of entities influence each other.

E.g.: Entities physically attract or repel each other based on their distance.

Swarmalators: Bidirectional coupling between sync and swarming

The phases ϕ_i influence the movements \mathbf{x}_i , and the positions \mathbf{x}_i influence the phase dynamics $\mathbf{\phi}_i$.

E.g.: Entities with similar phases may attract or repel each other stronger, and close-by entities may synchronize faster.

Swarmalators

Entities that sync and swarm

- N entities indexed by i
- Location \mathbf{x}_{i} , distance \mathbf{x}_{ij}
- Phase ϕ_i , phase diff ϕ_{ij}

Movement depends on phase:

$$\dot{\mathbf{x}}_i = \frac{1}{N} \sum_{j \neq i}^{N} \begin{bmatrix} \mathbf{I}_1(\mathbf{x}_{ij}) \ F(\phi_{ij}) - \mathbf{I}_2(\mathbf{x}_{ij}) \end{bmatrix}$$
 Velocity Attraction $1 + J\cos\phi_{ij}$ Repulsion

Phase dynamics depends on location:

$$\dot{\phi}_i = egin{array}{c} rac{K}{N} \sum_{j
eq i}^N H(\phi_{ij}) \ G_\phi(\mathbf{x}_{ij}) \ \end{array}$$
 Phase change Attraction

Behavior is governed by two parameters *J* and *K*.

O'Keeffe, Hong, Strogatz: Oscillators that sync and swarm. *Nature Communications*, 2017.

Swarmalators

Two control parameters govern the system behavior

Coupling strength $J \in [-1, 1]$

How strong is the influence of phase similarity on spatial attraction?

Positive: entities are attracted by others with *similar* phases

Sync strength $K \in [-1, 1]$

How strongly coupled are the phases of two entities?

Positive: reduces the phase differences

Negative: increases the phase differences

Complexity explorable "Swårmalätørs"

By Dirk Brockmann

Brockmann: Complexity explorable: Swårmalätørs - Pattern that emerge when collective motion and synchronization entangle, <u>complexity-explorables.org</u>, 2021.

Swarmalator patterns

Swarmalator patterns

Static phase wave (J, K) = (1, 0)

Splintered phase wave (J, K) = (1, -0.1)

Swarmalator patterns

Active phase wave (J, K) = (1, -0.75)

Source of pictures

Schilcher, Schmidt, Vogell, Bettstetter: Swarmalators with stochastic coupling and memory. *IEEE ACSOS*, 2021

From theory to practice

Transfer of the swarmalators concept to robotics

Research issues

- How to adapt the swarmalator model for use in robotics?
- Does the adapted model lead to identical patterns?
- Which applications exist for swarmalatorbots?

From theory to practice

Transfer of the swarmalators concept to robotics

Mechanics

- Robots have speed limits and other movement constraints.
- Robots require collision avoidance.

Interaction between robots

- Robots are typically not continuously coupled but instead interact at discrete points in time.
- Interaction via exchange of messages or sensor measurements.
- The communication range is limited (no all-to-all coupling).
- Messages over radio channels can be lost.
- Messages experience a propagation and processing delay.

A swarmalator model suited for robots

Each entity ...

- periodically broadcasts its own state (ϕ , predicted x)
- stores the latest states received from others (memory)
- updates its own state (ϕ, x) using time-discrete models of
 - temporal coordination
 - spatial coordination
 - coupling between temporal and spatial coordination

Temporal coordination

Synchronized:

Splay:

Clustered:

Spatial coordination

- Use of potential fields
- Collision avoidance
 - Safety area around robot
 - Adaptation of speed

Problems found and solved

- Physical oscillations occur and need to be mitigated
- Rate of state updates needs to be optimized adaptively

Experimental proof-of-concept with real robots

- Implemented revised model in ROS2
- Solved self-localization using pre-installed cameras (OptiTrack)
- Used Wi-Fi adhoc mode for wireless exchange of states
- Demonstrated proof-of-concept with small robots

All five original swarmalator patterns can be qualitatively reproduced both in simulation and in the real world.

Robots that sync and swarm

Balboa robot

- Company: Pololu
- Price: about 120 US\$
- Computing: RaspberryPi
- Integrated inertial measurement unit (IMU) for state estimation

For our needs

- Tuned low-level control
- Modified interface between low-level controller and RaspberryPi
- Used LED to display ϕ -value
- Self-balancing

balboa-32u4-arduino-library

Swarmalators with real-world constraints

Constraint	Impact
Limited speed and acceleration	Slower pattern formation
Low localization accuracy	Same patterns
	"Jittering" of movements
Unreliable wireless channel	Same patterns
	Slower pattern formation
Limited communication range	New patterns

Schilcher, Schmidt, Vogell, Bettstetter: Swarmalators with stochastic coupling and memory. *IEEE Intern. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS)*, 2021.

Impact of limited communication range

Static sync pattern

Schilcher, Schmidt, Vogell, Bettstetter: Swarmalators with stochastic coupling and memory. *IEEE Intern. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS)*, 2021.

Drones that sync and swarm

Used with kind permission

Application

Real-time 3D mapping with aerial swarms

Drones use cameras and sensors to navigate and collect data about the environment.

Multiple drones act in a coordinated way.

Edge computers perform computations, fuse data, and update the drones.

Application

Real-time 3D mapping with aerial swarms

Spatial and temporal coordination required

Swarmalators:

- complement existing path planning algorithms
- form certain patterns required for sensing

Research Directions

Swarmalatorbots

Localization

- Inaccuracies in the localization of robots
- Autonomous localization (e.g., using ultrawideband (UWB))

Wireless state exchange

Adaptive communication in swarms

Pattern space

- Patterns for the orientation of entities
- Patterns in three spatial dimensions (3D)

Drones forming a 3D pattern

Publications

Multidrone systems: More than the sum of the parts. *IEEE Computer*, 2021

Swarmalators with stochastic coupling and memory. *IEEE Intern. Conf. on Autonomic Comput. Self-Organizing Syst. (ACSOS)*, 2021

Sandsbots: Robots that sync and swarm. *IEEE Access*, 2020

Robots that sync and swarm: A proof of concept in ROS 2. *IEEE Intern. Symp. on Multi-Robot and Multi-Agent Syst. (MRS)*, 2019

Beyond sync: Distributed temporal coordination and its implementation in a multi-robot system. *IEEE Intern. Conf. on Self-Adaptive Self-Organizing Syst. (SASO)*, 2019

Funding

Austrian Science Fund (FWF)

Grant P30012: Self-organizing synchronization with stochastic coupling

Duration: 2018–23

University of Klagenfurt

Karl Popper Kolleg:

Networked autonomous aerial vehicles

Duration: 2017–21

Magenta (formerly: T-Mobile Austria)

Collaboration: Drone communications

over cellular networks

Duration: 2017–21

Take-away message

transferred

Technology

enables

Multi-robot systems

form

Space-time patterns

shape determined by a small set of parameters.

in a self-organized way (w/o explicit path programming)

Joint work with ...

Team members

Agata Barciś (2017–21) Udo Schilcher Jorge Schmidt Arke Vogell (2018–22)

Faculty at Dronehub

Hermann Hellwagner Bernhard Rinner Stephan Weiss (drone hall)

External collaborator

Kevin O'Keeffe (2019)

Photos: D. Waschnig

- Autonomous navigation
- Coordination and swarming
- Wireless communications
- Mission and path planning
- Human-drone interaction
- Image processing

Key facts

- Started 2008
- 9 Professors
- 41 PhDs and Postdocs
- > 150 publications

Flying "intelligent machines"

Emerging topics

- More autonomy and self-organization
- Learning drones
- Multidrone systems and swarms
- Counter-drone technologies
- Drones with 5G and edge computing
- Hybrid aerial and ground systems
- Methodology for systems design
- Societal and ethical aspects

Intelligent machines? – Self-organized nonlinear dynamics of machines across scales

Figure taken from workshop Website at MPI Physics of Complex Systems.

C. Bettstetter, U Klagenfurt, Lakeside Labs, bettstetter.name, @bettstetter