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Research on Networked Drones in Klagenfurt

Topics

Autonomousnavigation
Coordination
Human-drone interaction
Image processing

Mission and path planning
Wireless communications

Key facts
Applications Started 2008
= Aerial surveillance 8 Profs, 15 PhDs, Postdocs
= Delivery 9 funded projects
» Digital farming ~ 60 publications

Search and rescue

Lakeside Labs lll



Wireless Communications 1
for Multicopters

= What are the requirements?
" Are standard antennas suited?
* How to model the radio link?
" How does IEEE 802.11 work?
= What throughputis achieved?

= \What are common research
issues of control, vision, and
networking?

Lakeside Labs ll'



Wireless Communications for Small Drones
Scenario and requirements

3D mobility Reliability and

Infrastructurea!nd robustness against
mesh networking interference

: g ~ Mix of traffic types,

payload and control, incl.
low latency, high data rates

\\ Precise time sync
ﬁ and localization
y 4 g

—

Lakeside Labs lll



Antennas o
A simple proposal to improve range 4
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E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs



Radio Propagation Environment
Path loss exponent for outdoor ground-to-drone link
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Experiments yield o = 2.01 independent of mobility type.

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs



Radio Propagation Environment
Path loss exponent for outdoor drone-to-ground link

Received signal strength in dBm
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Experiments also yield o = 2.01 independent of mobility type.

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Radio Propagation Environment

Path loss exponent for outdoor drone-to-drone links
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E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Radio Propagation Environment

Nakagami model for small-scale fading

" The received poweris gamma distributed with shape
parameter m and scale parameter p/m.

* The probability that the received power is larger than a
certain threshold © is:

Gamma functionI'( .)
e
Plp > 0] = L (m,mﬁ—r) Incomplete Gamma
Pr ['(m) functionT°( ., .)

" The severeness of fading can be tuned by m € [0.5,20).

Lakeside Labs 'll

Nakagami fading with m =1 is Rayleigh fading.
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Radio Propagation Environment

Small-scale fading in outdoor drone-to-ground link
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E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Throughput Performance

802.11a and 11n over outdoor drone-to-ground link
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S. Hayat, E. Yanmaz, C. Bettstetter. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and
802.11ac. In Proc. IEEE Intern. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), Hong Kong, 2015.
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Throughput Performance

802.11n and 11ac over outdoor drone-to-ground link
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S. Hayat, E. Yanmaz, C. Bettstetter. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and
802.11ac. In Proc. IEEE Intern. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), Hong Kong, 2015.
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Wireless Multihop Communications

= Relaying

= Cooperativerelaying
= Mesh (IEEE 802.115)
= Ad hocrouting

= Delay-tolerant networking

Dependency and interaction with flight path planning

E. Yanmaz, S. Hayat, J. Scherer, C. Bettstetter. Experimental performance analysis of two-hop aerial 802.11
networks. In Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014.

S. Hayat, E. Yanmaz, T. X Brown, C. Bettstetter. Multi-objective UAV path planning for search and rescue. In Lakeside Lab
Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA), Marina Bay, Singapore, 2017. akeside Labs






Wireless Communications for Drones
Take home messages

" Tuneantenna configurationto improveradio range if needed
= Model channel by standard path loss and Nakagami fading
= Use latest IEEE 802.11 technologieswith certain limitations

= Aim forjoint optimization of networking, path planning,and
sensing in certain applications

Lakeside Labs 'll



Wireless Communications for Drones
Outlook

= Test prototypes of new wireless technologies(5G) for
low-latency, high-throughput, real-time aerial applications

= Lobbyforspectrum allocation for drone communications

= Developcomplete protocolstack for drone networks,
including security/safety, time synchronization, and localization

= Developspecial antennas for small drones

= Developnetworking solutions for large drone swarms

Lakeside Labs 'll



Job Selection for 2
Drone-Based Delivery Services

" |s aerial deliveryinteresting?

= How to model such a
transport system?

= How to dimensionit?

= How to coordinatedronesto
satisfy customer demands?

S 11T | IR
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Drone-Based Delivery Services
Urgent goods

%A > ‘__,—-'f;___’,—:—,'“ o Shia e - N ':\ 3 Photo: Fotolia (Bernd Leitner)
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Drone-Based Delivery Services
Last mile problem in rural areas

“Fotolia (WoII‘\‘A}erth'imagery)
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Zipline raises $25 million to deliver medical supplies by drone

Lora Kolodny (@lorakolodny

F [ Sin|s |G| |mlr

Zipline International Inc. has raised $25 million in a Series B funding round to expand its
humanitarian delivery drone business in Rwanda, the U.S. and beyond.

The startup builds drones and runs delivery services, dropping crucial medical supplies to
clinics or hospitals in areas that aren’t accessible by land.

Recently, TechCrunch visited Zipline's headquarters in Half Moon Bay, California for a
behind the scenes look at the company’s fixed-wing drones, launchers and unique landing
rigs.

WATCH THEIR
STORIES NOW

Zipline

|

rounN
2011

Zipline builds products that improve
access to healthcare and saves lives.
Zipline created Zijp, a small robot
airplane designed for a high level of
safety, using many of the same
approaches as commercial airliners.

It can carry vaccines, medicine, or
blood.

San Francisco, CA

Drones, Robotics, Logistics

Screenshot: TechCrunch



Drone-Based Delivery Services
Last mile problem in crowded cities

Lakeside Labs 'll



Mercedes-Benz and Matternet unveil vans that launch

delivery drones

Lora Kolodny (@lorakolodny

HODGEE 0O

' (
N F \g ¢ iviatternet have created a concept car, or as
th

, that could change the way small packages are delivered across
shc ces.

The Vision Van's rooftop serves as a launch and landing pad for Matternet's new, Matternet
M2 drones.

The Matternet M2 drones, which are autonomous, can pick up and carry a package of 4.4
pounds across 12 miles of sky on a single battery charge in real world conditions.

They are designed to reload their payload and swap out batteries without human
intervention. They work in conjunction with Mercedes-Benz Vans' on-board and cloud-based
systems so that items within a van are loaded up into the drone, automatically, at the cue of
software and with the help of robotic shelving systems within the van.

WATCH THEIR
STORIES NOW

<runchbase

Matternet

2011

Matternet build world-class flying
vehicles and intelligent control
software, integrated into a complete
solution for automated aerial
Ioiistics. They are passionate about
achieving the highest quality in their
products and operations, and
partner with the world’s most
innovative technology and logistics
companies and most impactful non-
Eovernmental organizations. They
uild world-class flying ...

Menlo Park, CA

Screenshot: TechCrunch
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Drone-Based Delivery Services

Modeling the system

Customers request Goods that are

b

storedin Depots (L) anddeliveredby Vehicles(K)

Customer demands (jobs) arrive over time on certain
locations according to a space-time stochastic process.

Lakeside Labs lll
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Drone-Based Delivery Services

Modeling the system

O
O
O “ ------ .E
O L]
drone O & \
4 o |
_________ customer o
depot O O 0 o
O
o o O O
‘ " Area: 16 km?
. = Jobs: A =0.65 per minute (Poisson)
O R > O * One good per job
O E = [ depots
o = K vehicles flying at 30 km/h

Air-to-charging time ratio: 1/3

Lakeside Labs lll
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Drone-Based Delivery Services

Network planning: How much to invest?

—
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Assumptions
Vehicle: 1.000 5+ 100 S x 10y
Depot: 15.000 S + 500 Sx 10y
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P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

The system “intelligence”

= Which customer to serve next?

= Which vehicleto serve the next customer?
= At which depotto let vehiclesload goods?
= Which paths to let vehicles follow?

= Where to let vehiclesreturn to if no customers are waiting?

Different problem than dynamic vehicle routing

Lakeside Labs ll'
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Job Selection Policies & Q
’“\O\O eQO&% Q?@? c’}“é(\
& O S N
e° < O A
. . OQ \)3)0 éf') (§<C)
Order of job selection Q \y < <

= Firstjob first (FJ)
= Nearestjob first (NJ)

Timing of job selection
= Asearlyas possible (+)

= Aslateas possible(—)

If >1 vehicle wants to select a job
= Random vehicles gets job (random)

= Nearestvehicle gets job (assortative)

No jobs: Vehicle goes to nearest depot

Lakeside Labs ll'
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Job Selection in Delivery Services

Comparing policies in the steady phase (1/3)

20

Average delivery time in minutes, 7"
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P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Comparing policies in the steady phase (2/3)

FCFS by Nearest V. (752)
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P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Comparing policies in the steady phase (3/3)
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P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Network planning: How much to invest in practice?

—
-

Ik ] l-
—a— Serve Closest Demand 5
--2-- FCFS by First Vehicle at Depot | j:

oo
|

A

% L depots
—E’E{— K drones

Average delivery time in minutes, 7
I
\

-

\ \ \
0 100 200 300 400
Infrastructure Expenditure in 1,000 USD

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs



Job Selection in Drone-Based Delivery Services
Take home messages

= Drone-based delivery is a reality for interesting niche
applicationstoday. There is great potential for startups.

= More complex multi-drone systems must be dimensioned on

different time horizons and require some system intelligence.
= Different job selection policiesshow different behavior:
= Tippingpoint behavior for some policies

= Timing of decision matters for some policies

Lakeside Labs ll'



Job Selection in Drone-Based Delivery Services
Outlook

" Methodscan be used for pickup-and-delivery without depots.

= Adaptive policy selection and learning to be includedin the

system design.

= Nontechnicalissues (legal, ethical, regulatory) need to be
clarified to a certain degree before large-scale drone-based

delivery services will be launched in Europe.

Lakeside Labs ll'



Research Days on Self-Organization and
Swarm Intelligence in Cyber Physical System
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Klagenfurt, July 10— 12, 2017

e \ Keynotes: Ayanian (USC), Di Caro (CMU)
Group work, lab sessions, and networking

researchdays.lakeside-labs.com
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Horizon 2020
Europe_an. European Union funding
Commission for Research & Innovation

Objectives
= Tool chain for swarms of cyber-physical systems
= Algorithmsfor swarming and evolutionary design

Partners

= |nst. Sup. Mario Boella (lead) Key facts

= Lakeside Labs, U Klagenfurt Duration: 2017-2020
" Fraunhofer FIT, Search Lab Funding: 4.9 M€

= Robotnik, Softteam, TTTech

Lakeside Labs 'll
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Thanks to my team members working on drones.

Predoctoral researchers Postdoctoral researchers

= Torsten Andre (2010-15) = Vladimir Vukadinovic(2014-15)
= Pasquale Grippa (2012-18) = Evsen Yanmaz (2008-)

= Samira Hayat (2012-18)

= Raheeb Muzaffar (2012-16)

= Arke Vogell (2016-)
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Networked Autonomous Aerial Vehicles

New doctoral school

Collaborative 3D reconstruction Key facts
Duration: 2017-2020
Research topics Funding: 0.5 M€
= Multimodal sensor fusion
= Mission planning Core faculty
= Time Synchronization Christian Bettstetter
= Multimediacommunications Hermann Hellwagner
Bernhard Rinner
>< Stephan Weiss
KARL
POPPER
KOLLEG

Lakeside Labs lll
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Networked autonomous aerial systess:

TEAM  PUBLICATIONS VIDEOS PHOTOS

News

Q
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Visit and talk at
Center for
Aerial Robotics

1 visited the Center for Aerial Robotics
Research and Education in Toronto. It has an
exciting research portfolio in small

drone systems...

Christian Bettstetter
May 3

Controlling drones: The passion
to simplify what is complicated
Ekaterina Peshkova has worked on a natural
and intuitive mode of interaction between
humans and drones.

. Romy Miiller
Feb 14

Towards efficient drone
networking
Cellular networks and delay-tolerant

networking will be key enablers for
networked drone swarms to take off.

) Stavros Toumpis
@ b3

Networking research
challenges in multi-UAV
systems

We highlight research issues for wireless

networking in aerial systems consisting of
multiple small autonomous drones.

Christian Bettstetter
Dec 9, 2016

Visit us at uav.aau.at.
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Dronehub K Sign up
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‘ Samira Hayat

Nov 30, 2016 - 2 min read

Atool called “drone”

The essence of my TEDx talk at CERN is that technology isn’t
inherently evil, but humans in command of technology must
become more “human-friendly”” Leave your comment and join the
discussion.

On a nice day in April this year, I received an offer to speak about my work
as a “drone researcher” at the 2016 TEDx event organized at CERN. Even
though the opportunity seemed too good to be true, my brain had already
started formulating a rough idea for the topic I wanted to address. I wanted
to answer the question that I have been asked many times when I introduce
myself as a drone researcher: “Are you sure that the technology that you are

developing will not be used for evil?”

Since I started my PhD period at Alpen-Adria-Universitdt Klagenfurt and
Intelligent Network of UAVs in
panion of my introductions. With

v ® o N

Lakeside Labs in the project Self:

2012, this question has been a cort¥e€
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Univ.-Prof. Dr.-Ing. Christian Bettstetter (@bettstetter)
Head, Institute of Networked & Embedded Systems, U Klagenfurt
Scientific Director, Lakeside Labs GmbH, Klagenfurt, Austria
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Some Magazine Articles from Dronehub K

Peshkova, Hitz, Kaufmann. Natural interaction techniques for an
unmanned aerial vehicle system. IEEE Pervasive Computing, 2017.

Hayat, Yanmaz, Muzaffar. Survey on UAV networks for civil
applications: A communicationsviewpoint. I[EEE Communication
Surveys & Tutorials, 2016.

Andre, Hummel, Schoellig, Yanmaz, Asadpour, Bettstetter, Grippa,
Hellwagner, Sand, Zhang. Application-driven design of aerial
communication networks. IEEE Communications Magazine, 2014.

Quaritsch, Kruggl, Wischounig-Strucl, Bhattacharya, Shah, Rinner.
Networked UAVs as aerial sensor network for disaster management
applications. e&i Elektrotechnik und Informationstechnik, 2010.





