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Portfolio in Aerial Robotics | Drone Systems

Research topics

= Autonomousnavigation

= Coordination

" Human-drone interaction
" |mage processing

= Mission and path planning
= Wireless communications

Application areas

= Aerial surveillance
= Delivery

= Digital farming

= Search and rescue

Key facts

Started 2008

8 Profs, 15 PhDs, Postdocs
9 funded projects

~ 60 publications
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Wireless Communications and 1
Networking for Small Drones

= What are the requirements?

» What can WLAN offer?

" Are standard antennas suited?
* How to model the radio link?
= What throughputis achieved?

= \What are common research
issues of control, vision, and

networking?

Lakeside Labs ll'



Wireless Communications for Small Drones
Scenario and requirements

3D mobility Reliability and

Infrastructurea!nd robustness against
mesh networking interference

: g ~ Mix of traffic types,

payload and control, incl.
low latency, high data rates

\\ Precise time sync
ﬁ and localization
y 4 g

—
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Wireless Communications for Small Drones
Mix of different traffic types

Traffic type Requirement
Drone control Low latency + high reliability
Vision-based navigation High data rate + low latency

Multimediaapplications High data rate + QoS support

Example: VGA camera: 2.6 kbit - 30/s = 80 Mbit/s (one drone)

Lakeside Labs ll'
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Wireless Communications for Small Drones

State of the art
= Most of commercially available drones use WLAN IEEE 802.11

= 802.11 operates in unlicensed spectrum and chips are cheap

= 802.11 has not been designed for such purpose

Questions for experimental research
= How far do we get with off-the-shelf IEEE 802.117

= Do we meet the requirements of certain drone applications?

Lakeside Labs ll'
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WLAN Standard IEEE 802.11
Overview

VA DCF QoS (11e) Mesh (11s)
layer Distributed
Coordination Function Security (11i)
Physical 11n 11p 1llac 1lad 11ah
layer
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WLAN Standard IEEE 802.11
Physical layers
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Year Frequency Max. rate Range
11a 1999 5 GHz ISM 54 Mbit/s <100 m
11g | 2003 2.4 GHz ISM 54 Mbit/s <250 m
11n | 2009 2.4 +5GHzISM 135 Mbit/s <250m
11p | 2010 5.9 GHz licensed 27 Mbit/s <1km
1lac | 2013 5 GHz ISM 780 Mbit/s
11ad | 2012 60 GHz (mm) 6.7 Gbit/s <10 m
11ah | 2016 900 MHz 20 Mbit/s 1 km

Lakeside Labs ll'
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Wireless Communications for Small Drones

What influences the communication quality?

= Wireless technology(e.g., IEEE 802.11, LTE, 802.15.1)
= Antennaradiation pattern and polarization
= Shieldingby drone hardware
= Radio propagation environment
" QObstacles
" Multipath propagation of the radio wave
= Movement pattern of drones
= And other factors

Lakeside Labs ll'
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Antennas

Directivity pattern of a dipole antenna

Antenna
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dh UAV 15
Antennas s

A simple proposal to improve range 4

AP

Received signal strength in dBm
L}
o

=75t
One vertical Uplink
-80 antenna - =-DL 1 pownlink
2l0 4JO 6IO 8I0
elevation in degree @
Three horizontalantennas (HHH) Measurements with IEEE 802.11a

at distance of 100 m

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Radio Propagation Environment

Diffraction

Scattering

ws /
Line-of- j&‘ Non-line-of-

sight path sight path

_ _ Shadowing
Multipath propagation
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Radio Propagation Environment

Path loss
The reception power decreases with distance d %
between sender and receiver. \

Shadowing

Radio wave is disturbed by obstacles in the % ah
transmission path.

Multipath propagation

Radio wave is reflected and scattered at objects

and at the ground, leading to multiple received %%
}

copies of the same transmitted wave.
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Radio Propagation Environment

Simple path loss model

for d > d

Path loss exponent «:
- Characterizes the environment

- Free space: o = 2

- Urban environment: 3 < a <6

p,/p; in dB

log(d)

Constants:
e Reference distance dy

e (GGain at dj is go
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Radio Propagation Environment

Path loss exponent for outdoor ground-to-drone link
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Experiments yield o = 2.01 independent of mobility type.

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs



20

Radio Propagation Environment
Path loss exponent for outdoor drone-to-ground link

Received signal strength in dBm

+ Measured

= Bogt fit
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distance in m

(a) Horizontal: moving away

Received signal strength in dBm

s .o | + Measured
: . | = Best fit
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distance in m

(b) Vertical: ascending

Experiments also yield o = 2.01 independent of mobility type.

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Radio Propagation Environment

Path loss exponent for outdoor drone-to-drone links

UAV 1 to UAV 2 UAV 2 to UAV 1
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Experiments yield o = 2.03.

E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Radio Propagation Environment

Path loss
The reception power decreases with distance d %
between sender and receiver. \

Shadowing

Radio wave is disturbed by obstacles in the % ah
transmission path.

Multipath propagation

Radio wave is reflected and scattered at objects

and at the ground, leading to multiple received %%
}

copies of the same transmitted wave.
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Radio Propagation Environment

Multipath propagation leads to small-scale fading

p,/ dB
= The multipleincoming radio waves °
superimpose at the receiver. 20
= The overall reception power shows jg
rapid variations over time and space. ™Y

.. '600 0.02 0.04 0.;06 0.08 0.1
= Variationsalready occur over small timein's

distances in the order of one wavelength.

= Even ifthe receiver is not mobile, small-scale fading
may occur due to the mobility of surrounding objects.

Lakeside Labs lll
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Radio Propagation Environment

Stochastic modeling of small-scale fading

LR | T LA | T T rl'llvl

. Pr Pr
Pt Pt

Mean value is given

by path loss model.

p,/p;in dB

Fading is modeled by

a random variable.
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Radio Propagation Environment

Nakagami model for small-scale fading

" The received poweris gamma distributed with shape
parameter m and scale parameter u/m (see Appendix).

* The probability that the received power is larger than a
certain threshold © is:

Gamma functionI'( * )
e
Plp > 0] = L (m,mﬁ—r) Incomplete Gamma
Pr ['(m) functionT'( -, *)

" The severeness of fading can be tuned by m € [0.5,20).

Lakeside Labs 'll
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Radio Propagation Environment

Small-scale fading in outdoor drone-to-ground link
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E. Yanmaz, R. Kuschnig, C. Bettstetter. Achieving air-ground communications in 802.11 networks with three- .
dimensional aerial mobility. In Proc. IEEE Intern. Conf. on Computer Commun. (INFOCOM), Turin, Italy, 2013. Lakeside Labs
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Throughput Performance

802.11a and 11n over outdoor drone-to-ground link

120 T T T |
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S. Hayat, E. Yanmaz, C. Bettstetter. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and
802.11ac. In Proc. IEEE Intern. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), Hong Kong, 2015.
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Throughput Performance

802.11n and 11ac over outdoor drone-to-ground link

250 l 1 . . ‘
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S. Hayat, E. Yanmaz, C. Bettstetter. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11n and
802.11ac. In Proc. IEEE Intern. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), Hong Kong, 2015.




Wireless Networking for Small Drones

Protocol architecture

Application

Transport
Network Network
Data link Datalink
Physical Physical

29

N

Network
Data link

Physical

-

—

Application
Transport
Network
Datalink

Physical
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Wireless Multihop Communications

Drones serve as relays for o

traffic from other drones. 7‘,\‘ Qo

Drones form a mesh network fX
using IEEE 802.11s. \\

Drones exploit cooperative diversity to ﬁ |
make links more robust. .@g

Large drone network uses ad hocrouting protocols.

Large drone network may use concepts from delay-tolerant
networking for certain applications.

Different approach for each traffic type possible.

networks. In Proc. IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014.

E. Yanmaz, S. Hayat, J. Scherer, C. Bettstetter. Experimental performance analysis of two-hop aerial 802.11 .
Lakeside Labs
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Wireless Communications and Path Planning

Case study in “search and rescue” scenario
Mission

Multiple drones search a target on the ground in an area.

When the target is found, information about it (e.g., video)
must be continuously communicated to a ground station.

A wireless communication path between the target and
ground station is formed for this purpose.

S. Hayat, E. Yanmaz, T. X Brown, C. Bettstetter. Multi-objective UAV path planning for search and rescue. .
In Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA), Marina Bay, Singapore, 2017. Lakeside Labs
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Wireless Communications and Path Planning

Case study in “search and rescue” scenario

" Proposed multi-objective optimization using a genetic approach

= Minimized mission time consisting of:
= Time tofind target (area coverage)
= Time tosetup relay chain (network connectivity)
= Evaluated different communication strategies:
= Datamule =“inform first”

= Relaychain = “connect first”

= Hybrid approach =“simultaneousinformand connect”

S. Hayat, E. Yanmaz, T. X Brown, C. Bettstetter. Multi-objective UAV path planning for search and rescue. .
In Proc. IEEE Intern. Conf. on Robotics and Automation (ICRA), Marina Bay, Singapore, 2017. Lakeside Labs
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Wireless Communications for Small Drones

Summary and outlook

Take home messages

= Tune antenna configurationto improve radio range if needed
= Model channel by standard path loss and Nakagami fading

= Use latest IEEE 802.11 technologieswith certain limitations

= Developacommon view on networking, path planning, and

sensing in certain applicationsto jointly optimize them

Potential topics for collaboration with CARRE
= Jointcommunicationsand [adaptive] path planningin swarms

= Wireless communicationsfor vision-based navigation

Lakeside Labs 'll
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Wireless Communications for Small Drones
Outlook

What is needed?

Test prototypes of new wireless technologies (5G) for

low-latency, high-throughput, real-time aerial applications

Lobby for spectrum allocation for drone communications
to avoid interference and jamming

Develop complete protocol stack for drone networks,

including security/safety, time synchronization, and localization

Develop specific networking solutions for large drone swarms

Lakeside Labs 'll



Wireless communications
and networking

SRR 1T TTTEED | IR AR AR

Job selection for
delivery services



Job Selection for

Drone-Based Delivery Services

= Why isthis topicinteresting?
= How to model the system?

= Which drone should satisfy
which customer demand?

= \When to make this decision?

= How to dimensionsuch a
transport system?

i
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Drone-Based Delivery Services
Urgent goods

. Of importanceis delivery time
~ Autonomous navigation

i e S e ——— .~ . Photo: Fotolia (Bernd Leitne
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Drone-Based Delivery Services
Last mile problem in rural areas

Lakeside Labs 'l'



Drone-Based Delivery Services
Last mile problem in crowded cities

Lakeside Labs 'll
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Delivery Services

Modeling the system

Customers request Goods that are

b

storedin Depots (L) anddeliveredby Vehicles(K)

Customer demands (jobs) arrive over time on certain
locations according to a space-time stochastic process.

Lakeside Labs lll
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Delivery Services

Modeling the system

O
O » ------ E
® L]
drone O & \
4 o 9
T...._customer o
depot © O 0o o
o O
O O
O ‘ " Area: 16 km?
. = Jobs: A =0.65 per minute (Poisson)
O R > O * One good per job
O -1 = [ depots
o = K vehicles flying at 30 km/h

Air-to-charging time ratio: 1/3

Lakeside Labs lll
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Delivery Services

Network planning: How much to invest?

—
-]

Assumptions
Vehicle: 1.000 5+ 100 S x 10y
Depot: 15.000 S + 500 Sx 10y

Average delivery time in minutes, 7’
s
\

0. .- T

\ \ \
100 200 300 400
Infrastructure Expenditure in 1,000 USD

-
-

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs



43

Job Selection in Delivery Services
The system “intelligence”

Job selection goes beyond merely picking the next demand,

it does all decisions needed to operate the transport system.

Example questions to be addressed:

Which customer demand to serve next?

Which vehicleto let serve the next customer demand?
At which depot to let vehiclesload up goods?

Which paths to let vehicles follow?

Where to let vehicles return to if no customers are waiting?

Different problem than dynamic vehicle routing

Lakeside Labs ll'
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Job Selection in Delivery Services

Two classes of non-partitioning policies

First job first (FJ)

= Central entity selects next job based on the arrival times of the
jobs and assigns it to a vehicle.

Nearest job first (NJ)

= Every vehicleselects a job based onits own location and the
locations of waiting customers and depots.

= Selected jobs are removed form the list of waiting jobs.

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Timing of decision

Should we delay the decision on job selection to obtain more
information on new customer requests to reduce delivery time?

Two extreme cases

= Selection made as soon as possible (just after the previousjob)

= Selection made as late as possible (just before loading the good)

Both cases are evaluated for both policies(NJ, FJ).

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs



Job Selection in Delivery Services R
.. . . N\ 2>
Four policies investigated o £ =5 <&
%\,\ Q}Q’QO (\Q/’bﬁ '\(3\\\
N

In which order are jobs selected?

First come first served from shared queue ' .7 FJ

No specific selection order of jobs

Where are decisions made?

At customer, just after completing service

‘ early (+)

.— late (-)
What if >1 vehicle wants to select a job?

o0
O
®
Random vehicles gets job ‘ ' random

At depot, just before loading goods

Nearest vehicle gets job assortative

No jobs: Vehicle goes to nearest depot

Lakeside Labs ll'
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Job Selection in Delivery Services

Startup phase

0 [
S K=11 /
I
|& =G
% ’ K=12
£ K=14
g 4 7
a K=16
g Do Nearest Job (71'5;])
5 3
5,
;T':_«; FCFS by Nearest Vehicle (WE‘L) K=11
%Q f:’:‘ K=12
S Tum | Ke{14,16]
-
’ ‘ | ‘ | | L = 16 depot
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K drones

Demand, n

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Comparing policies in the steady phase

Average delivery time in minutes, 7"

10 -{ Do Nearest Job (]

Rush to Depots (=7

FCFS by Nearest V. (w52

FCFS by First V. at Depot (x4

0 I I I I I
0 4 8 12 16 20 24

Number of vehicles, K

Number of depots L =1

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Comparing policies in the steady phase

FCFS by Nearest V. (752)

20

=~

= 15

P

< 10
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g Do Nearest Job| (7';)
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- Rush to Depots|(=~; q
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Number of depots L =9

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Comparing policies in the steady phase

20
=~
P
;l:
= 15 -
P
= 10 -
:E Do Nearest| Job (n’f;.,) —
= Rush to Depots (w!_v;’)
[} [~ \
=0 9 S—
g FCFS by Nearest V. (x5 .
< FCFS by Fyrst V. at Depot (x¥3) —
Toin - M——
" 0 1 1 1 I I
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Number of vehicles, K

Number of depots L = 16

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Delivery Services

Some insight

Differences in policies
= Job selection can occur as soon or as late as possible with FJ.

= Job selection should be made as soon as possible with NJ.

Delayed decisions can also have a negative effect. This relates
to the fact that one of the most important decisions is where
a vehicle should return to after satisfying a customer demand.

Lakeside Labs ll'
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Job Selection in Delivery Services

Network planning: How much to invest in practice?

—
-

Ik ] l-
—a— Serve Closest Demand 5
--2-- FCFS by First Vehicle at Depot | j:

oo
|

A

% L depots
—E’E{— K drones

Average delivery time in minutes, 7
I
\

-

\ \ \
0 100 200 300 400
Infrastructure Expenditure in 1,000 USD

P. Grippa, D. A. Behrens, C. Bettstetter, F. Wall. Job selection in a network of autonomous UAVs .
for delivery of goods. Accepted for Robotics: Science and Systems (RSS), Cambridge, MA, 2017. Lakeside Labs
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Job Selection in Drone-Based Delivery Services

Summary and outlook

Take home messages
= System dimensioning with three time horizons

= Different job selection policieshave different behavior
= Timingof decision matters for some policies

= Threshold behavior for some policies

= Similar methods can be used for pickup-and-delivery w/o depots

General challenges and potential for joint work
=" Transfer customers’ expectationsin to system intelligence
= Have simple decision policies for complex systems

" |ncludelearningin job selection

Lakeside Labs lll



Project overview

Duration: 10 minutes



Lakeside

Collaborative Microdrones

Achievements
= Developedoutdoorsystem for aerial sensing with small drones
= Contributedto path planning, image stitching, communications
= Performed system integration

» Tested and evaluated system with firefighers and industry

Key facts
Duration: 2008-2013
Funding: about 2 M€

Lakeside Labs 'll
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Autonomous Forest Inventorying with Drones

Funded project with application partners

Research topics

= GPS-free state estimation

= Real-time local 3D motion planning
= High-detail 3D reconstruction

= Prototype forest inventory system

Partners

= U Klagenfurt (Weiss, lead) Key facts
Duration: 2016—2018

Funding: 0.45 M€

= | akeside Labs, Joanneum
= E.C.O.,Umweltdata

) ;5;"& Lakeside Labs 'll
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_ ». - N
- — <%
. — .\‘&% e * ".n.."ﬁ
- ~ E Horizon 2020
' I ’ r urope.an_ European Union funding
Commission for Research & Innovation
Objectives

= Developtoolchain for swarms of cyber-physical systems

= Consider complete path from setup over test to deployment

= Developalgorithm library for swarming & evolutionary design

Partners

Inst. Sup. Mario Boella (lead) Key facts
Duration: 2017-2020

Funding: 4.9 M€

Lakeside Labs, U Klagenfurt
Fraunhofer FIT, Search Lab
Robotnik, Softteam, TTTech

Lakeside Labs ll'
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Networked Autonomous Aerial Vehicles (NAV)
Doctoral school

Common objective

Collaborative 3D reconstruction

Research topics

Multimodal sensor fusion
Decentralized mission planning
Decentralized time synchronization
Multimediacommunications

Key facts
Duration: 2017-2020
Funding:0.5 M€

Core faculty
Christian Bettstetter
Hermann Hellwagner
Bernhard Rinner
Stephan Weiss

Lakeside Labs lll



Team Members on Drones

Predoctoral researchers

Torsten Andre (2010-15)
Pasquale Grippa (2012-18)
Samira Hayat (2012-18)
Raheeb Muzaffar (2012-16)
Arke Vogell (2016-)

Postdoctoral researchers

Vladimir Vukadinovic(2014-15)
Evsen Yanmaz (2008-)

Thanks!

59
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Dronehub K

v 5 Dronehub K Sign up
Drogghub K ' \g«?.,«"

Networked autonomous aerial systens-

HOME TEAM PUBLICATIONS VIDEOS PHOTOS Q

‘ Samira Hayat

Nov 30, 2016 - 2 min read
TEAM  PUBLICATIONS VIDEOS PHOTOS Q Follow

What is Dronehub K?

A multidisciplinary team at University of
Klagenfurt and Lakeside Labs performs
research on networked autonomous
aerial systems.

Christian Bettstetter
Dec 15, 2016

News

Atool called “drone”

The essence of my TEDx talk at CERN is that technology isn’t
inherently evil, but humans in command of technology must
become more “human-friendly”” Leave your comment and join the

discussion.
Controlling drones: The passion  Towards efficient drone Networking research . . - .
. N N . . 2 . On a nice day in April this year, I received an offer to speak about my work
to simplify what is complicated  networking challenges in multi-UAV B . ;
Ekaterina Peshkova has worked ona natural ~ Cellular networks and delay-tolerant systems as a “drone researcher” at the 2016 TEDx event organized at CERN. Even
and intuitive mode of interaction between networking will be key enablers for We highlight research issues for wireless though the opportunity seemed too good to be true, my brain had already
fumans and drones. networked drone swarms to take off. networking in aerial systems consisting of started formulating a rough idea for the topic I wanted to address. I wanted
. . multiple small autonomous drones. . i 3
% Romy Mller @  Stavros Toumpis to answer the question that I have been asked many times when I introduce
febta ® o Christian Bettstetter «
Dec 9, 2016 myself as a drone researcher: “Are you sure that the technology that you are

developing will not be used for evil?”

Since I started my PhD period at Alpen-Adria-Universitdt Klagenfurt and
Lakeside Labs in the project Self: Intelligent Network of UAVs in

V i S i t u S a t u a v. a a u N a t . 2012, this question has been a cort¥e€ panion of my introductions. With

Q2 Q v ® o N




Selected Recent Publications from Dronehub K

Hayat, Yanmaz, Brown, Bettstetter. Multi-objective UAV path planning for search
and rescue. In Proc. IEEE Intern. Conf. Robotics and Automation, 2017.

Peshkova, Hitz, Kaufmann. Natural interaction techniques for an unmanned aerial
vehicle system. IEEE Pervasive Computing, 2017.

Hayat, Yanmaz, Muzaffar. Survey on UAV networks for civil applications: A
communications viewpoint. [EEE Communication Surveys & Tutorials, 2016.

Khan, Rinner, Cavallaro. Cooperative robots to observe moving targets: A review.
IEEE Transactions on Cybernetics, 2016.

Khan, Yanmaz, Rinner. Information exchange and decision making in MAV networks
for cooperative search. IEEE Transactions on Control of Network Systems, 2015.

Andre, Hummel, Schoellig, Yanmaz, Asadpour, Bettstetter, Grippa, Hellwagner,
Sand, Zhang. Application-driven design of aerial communication networks. |IEEE
Communications Magazine, 2014.
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Self-Organization

Individual Entity (Fish)

= Has simple behaviorrules

= Has local view only

@ Emergence

Entire System (Shoal)

= Solves a complextask
" |sadaptivetochanges

m |sscalableandrobust

Camazine, Deneubourg, Franks, Sneyd, Theraulaz, Bonabeauet: Self-Organizationin Biological Systems, 2001.

Prehofer, Bettstetter: Self-organization in communication networks: Principles and design paradigms.

IEEE Communications Magazine, July 2005.
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Gamma Distribution

With shape parameter m and scale parameter u/m

o= (2) T e (<2) -t (%)

I'(m)
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Gamma Function

=  Gamma function:
o0
['(x) ::/ t* et dt
0
" |ncomplete Gamma function:

[(z,a) = / t* et dt

= Valuesare listed in books and software packages:

Function Maple Mathematica  Matlab
I'(x) GAMMA (x) Gamma [x] gamma (x)
[(x,a) GAMMA (x,a) Gamma [, a] —
1 — Ltz ammainc (a,x)
T(2) & ’
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T'(1) =1 and T(0.5) = /7
') =(x—1)! for x € N
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