Aerial Imaging and Wireless Communications with Multiple Autonomous UAVs

Univ.-Prof. Christian Bettstetter and Dr. Evsen Yanmaz
Lakeside Research Days, 9 July 2013
Bettstetter Group

Team
- 1 full professor, 1 secretary
- 4 senior researchers
- 10 PhD students
- Highly international

Collaborations and funding
- With Orange, DOCOMO, Max Planck Society, U Porto, Athens UEB, TU Munich
- > 700 T€ third-party funding / year
Bettstetter Group

Current Projects

• Cooperative relaying in wireless networks
• Interference dynamics in wireless networks
• Self-organizing synchronization
• Communications and coordination of flying robots

Methodology

• Methods from maths (stochastics, graph theory) over simulation and protocol engineering to prototyping on hardware
• Striving for a good mix of fundamental and applied research, more and more also interdisciplinary research
Starting Point: Disaster Management

User defines high-level tasks (e.g. observation area)

User obtains real-time high-quality overview image
Goals and Research Issues

- Develop autonomous system for aerial reconnaissance
- Support first responders in disaster management
- Use off-the-shelf, small-scale, low-altitude multicopters equipped with high-quality cameras and GPS
- Deploy multiple drones to achieve fast area coverage

Research Issues

Flight routes → Wireless networking → Image processing

System integration and software platform
Flying High: Multi-UAV Aerial Imaging

Lakeside Labs
Challenges

• Strong resource limitations: Flight time, payload, computation
• Coordination of multiple drones: Centralized vs. distributed approach
• Multimedia network with dynamic, three-dimensional mobility
• Non-trivial user interface with prompt response
• Aspects of experimental research: Safety, legal issues
• Application partners, project funding
Image Processing: Stitching

Using position data (GPS)

Using position and orientation (GPS and IMU)

Exploiting feature detection (Image data)

3D Landscape Models in Disaster Areas

- Covering 45 km² in Haiti in six days
- System that local people can use
- E.g.: Understand flow of water

Photos with kind permission from Emanuele Lubrano
Applications Beyond Disaster Response

3D mapping

Person and object tracking

Industrial site monitoring, police support, accident documentation, and many others

Left photo with kind permission from C. Strecha, Pix4D.
Wireless Communications

Issues to consider

• Which technology? Which antennas?

• Which UAV?
 • 3D motion, tilting
 • Hardware limitations (payload, placement)

Basic question

• How far can we deliver data at which data rate?
Experiments Conducted

• Flew quadrotor with waypoint navigation
• Generated UDP traffic (uplink and downlink) over WLAN

Performance metrics
• Received signal strength (RSS)
• Throughput and delay
• Packet loss

Test influence of
• Height and distance
• Orientation UAV-base station
• Antenna setup
A Simple Extension to IEEE 802.11a

HHH
Radiation Pattern (HHH setup)

UAV rotating around its z-axis at 100 m distance from the AP
Radiation Pattern (HHH setup)

UAV ascending on the surface of a sphere

UAV flying around the access point at fixed altitude
Path Loss Between UAV and Access Point

Path loss coefficient is ~ 2; consistent with free-space path loss

$$PL(d) = PL(d_0) + 10\alpha \log_{10} \left(\frac{d}{d_0} \right)$$

(a) Horizontal: moving away
(b) Vertical: ascending
From Communications to Networking

- Wireless UAV mesh network based on WLAN 802.11s
- Use of cooperative relaying
- Interaction between UAV coordination and networking
Concluding Remarks

• Work on routing, image stitching, and wireless communications
• Challenges due to multidisciplinary and experimental character
• Various applications, several startup companies
• Various legal and privacy issues
• Attractive for students and PhD researchers
Selected Publications

Acknowledgements