
Turbo Decoding with Tail{Biting Trellises

Christian Wei�, Christian Bettstetter, Sven Riedel

Institute for Communications Engineering

Munich University of Technology

D{80290 M�unchen, Germany

Daniel J. Costello, Jr.

Department of Electrical Engineering

University of Notre Dame

Notre Dame, IN 46556, USA

Abstract

Tail{biting codes are considered as component codes
for parallel concatenated block codes. Based on
the two{dimensional weight distribution of tail{biting
codes, we calculate the minimum distance of the par-
allel concatenated code and give guidelines on how to
choose good tail{biting component codes. We show
how to encode tail{biting codes using systematic feed-
back encoders, which is an important design crite-
rion. The performance of codes with di�erent rate,
length, and complexity using iterative (turbo) decod-
ing is evaluated by simulation.

1 Introduction

Since the introduction of turbo decoding [1] in 1993,
there has been considerable research on the inves-
tigation of parallel concatenated coding schemes
employing convolutional codes (CCs) as component
codes. Using block codes (BCs) as component
codes has received less attention. Considering the
rate loss imposed by terminating the CC, this is
surprising particularly for short block lengths, and
is mainly due to the favorable properties of feedback
convolutional encoders with turbo decoding. The
feedback enables us to pair information vectors of
low Hamming weight with high parity weights. This
is important for the performance of turbo codes
at low to moderate signal{to{noise ratios (SNRs),
while the minimum distance of the overall code
governs the asymptotic behavior. Moreover, the
regular trellis structure of CCs facilitates decoding,
and there is a well developed theory of soft{in/soft{
out (SISO) decoders for CCs. Recognizing that
quasi{cyclic BCs are equivalent to tail{biting CCs
[3], we can exploit these properties without su�ering
the rate loss of conventional CCs. In addition,
employing block component codes allows a higher
degree of parallel processing, which is desirable
especially in delay sensitive applications.

In what follows, we describe a rate{k0=n0, k0 < n0,
convolutional encoder as a device which generates

the n0{tuple vt = (v
(1)
t ; : : : ; v

(n0)
t ) of code bits at

time t given the k0{tuple ut = (u
(1)
t ; : : : ; u

(k0)
t )

of information bits, where v
(i)
t ; u

(i)
t 2 GF(2),

t � 0. The mapping between the information

sequence u = (u0;u1; : : :) and the code sequence
v = (v0;v1; : : :) is determined by v = uG, where G
denotes the semi{in�nite generator matrix. More-
over, sequences of ut and vt can be written as
u(D) =

P1

t=0 utD
t and v(D) =

P1

t=0 vtD
t, respec-

tively. Hence, an encoder can equivalently be de-
scribed by a (k0 � n0) generator matrix G(D) of
full rank with polynomial or rational entries such
that v(D) = u(D)G(D). A generator matrix
and its corresponding encoder is called systematic
whenever all bits in ut appear unchanged in vt.
The state of the encoder at time t is denoted by

xt = (x
(1)
t ; : : : ; x

(m)
t )T , wherem is the memory of the

encoder.

2 The Tail{Biting Idea

From the strict de�nition of CCs it is clear that
CCs can only be applied to semi{in�nite sequences,
i.e., encoding starts at time t = 0 in the all{zero
state x0 = (0; : : : ; 0)T = 0T and goes on contin-
uously. In contrast to this, due to practical con-
straints (e.g., synchronization, channel estimation,
etc.), almost any communication system is block{
oriented, and, therefore, we must �nd methods to
obtain code blocks of �nite length from a convolu-
tional encoder. If the information block length is
Nk0 bits, the most obvious possibility is to stop the
encoding process after Nk0 bits (direct truncation),
but this leads to weaker error protection for the last
codeword bits. The standard solution to avoid this
performance degradation is to force the encoder back
to the all zero{state by appending a block of mk0
tail bits to the information vector (zero termination),
which leads to an ((N +m)n0; Nk0) block code. Be-
cause of the rate loss imposed by termination, this
method is ine�cient, especially if the codewords are
very short.
Tail{biting avoids the rate loss without su�ering

from degraded error protection at the end of the
block. Using tail{biting, the state of the encoder at
the beginning of the encoding process is not neces-
sarily the all{zero state, but may be one of the other
states. The fundamental idea behind tail{biting is
that the encoder is controlled in such a way that
it starts and ends the encoding process in the same
state, i.e., x0 = xN . In the trellis representation of
a tail{biting code only those paths that start and



end in the same state are valid codewords (see, e.g.,
the bold line in Fig. 2b. In the following, we denote
an (Nn0; Nk0) tail{biting code derived from a rate{
k0=n0 convolutional code C over N cycles by CN .

3 Encoding Tail{Biting Codes Using Feed-
back Encoders

For encoders without feedback it is easy to ful�ll the
tail{biting boundary condition x0 = xN , since the
ending state xN depends only on the last m input
k0{tuples uN�m; : : : ;uN�1 to the encoder. For feed-
back encoders the situation is more complicated. In
this case, the ending state xN depends on the entire
information vector u = (u0; : : : ;uN�1). Thus, we
must calculate for a given information vector u the
initial state x0 that will lead to the same state after
N cycles.

We solve this problem by using the state space
representation

xt+1 = Axt +BuTt (1)

v
T
t = Cxt +DuTt (2)

of the encoder. The complete solution of (1) is calcu-
lated by the superposition of the zero{input solution

x
[zi]
t and the zero{state solution x

[zs]
t :

xt = x
[zi]
t + x

[zs]
t = At

x0 +
t�1X
�=0

A(t�1)��BuT� : (3)

If we demand that the state at time t = N is equal to
the initial state x0, we obtain from (3) the equation

�
AN + Im

�
x0 = x

[zs]
N ; (4)

where Im denotes the (m � m) identity matrix.
Provided the matrix (AN + Im) is invertible, the
correct initial state x0 can be calculated knowing

the zero{state response x
[zs]
N .

Following this discussion, the encoding process is
divided into two steps:

� The �rst step is to determine the zero{state re-

sponse x
[zs]
N for a given information vector u.

The encoder starts in the all{zero state x0 = 0;
all Nk0 information bits are input, and the out-
put bits are ignored. After N cycles the encoder

is in the state x
[zs]
N . We can calculate the corre-

sponding initial state x0 using (4), and initialize
the encoder accordingly.

� The second step is the actual encoding. The en-
coder starts in the correct initial state x0; the
information vector u is input, and a valid code-
word v results.

In an application, we could store the pre{computed

solutions to (4) for various x
[zs]
N in a look{up table.

����

��

����
�� ����

��
x
(2)
tx

(1)
t

v
(3)
t

u
(2)
t v

(2)
t

u
(1)
t v

(1)
t

Figure 1: Encoder of the convolutional code CA

Example: The (15; 10) tail{biting code C5A is ob-
tained from a rate{2/3 convolutional code CA over
N = 5 cycles. A systematic generator matrix of CA
is given by

GA(D) =

 
1 0 1+D

1+D+D2

0 1 1+D2

1+D+D2

!
: (5)

The corresponding encoder is shown in Fig. 1. By
inspection we can write down the state matrix

A =

�
0 1
1 1

�
; (6)

and using (4) we obtain

 �
0 1
1 1

�5

+ I2

!
x0 = x

[zs]
5 ; (7)

whose solution for the initial state is

x0 =

�
1 1
1 0

�
x
[zs]
5 : (8)

The table of possible solutions is

x
[zs]
5 (0 0)T (0 1)T (1 0)T (1 1)T

x0 (0 0)T (1 0)T (1 1)T (0 1)T

To demonstrate the encoding process, we encode the
information sequence

u = (u0;u1; : : : ;u4) = (01; 00; 11; 11; 11) : (9)

This example is illustrated in Fig. 2. As mentioned
above, we must perform two encoding runs. The
�rst run starts in the all{zero state x0 = (0 0)T . All
5k0 = 10 information bits are input, and the output
bits are ignored. After N = 5 cycles, the encoder is

in state x
[zs]
5 = (1 1)T . We look up the corresponding

initial state x0 in the above table, and then repeat
the encoding starting in state x0 = (0 1)T . This
time, the boundary condition is satis�ed, and a valid
codeword

v = (v0;v1; : : : ;v4) = (010; 000; 111; 110; 111) (10)

results.



00

10

11

00

01

10

11

01

00

10

11

00

01

10

11

01

(00)(01) (11) (11) (11)

vt is ignored.

ut =

(01)ut = (00) (11) (11) (11)

vt = (110) (111)(010) (000) (111)

a) Step 1

b) Step 2

Figure 2: Two steps of the encoding procedure for
the tail{biting code C5A

4 Parallel Concatenation and Turbo{
Decoding of Tail{Biting Codes

Fig. 3 shows the encoding scheme of a block
interleaved parallel concatenated code using two
systematic block codes, an (n1; k1) block code
C� and an (n2; k2) block code C p, as component
codes. To generate a parallel concatenated block
code (PCBC) the information bits are arranged
in a (k2 � k1) matrix and then encoded in rows
and columns applying the component codes C�

and C p, respectively. We obtain k2 codewords
of the horizontal code C� and k1 codewords of
the vertical code C p. Using this encoding scheme
an (n1k2+k1n2{k1k2, k2k1) PCBC results, which

bits
information

of vertical
component code

C p

parity bits

C�
component code
of horizontal
parity bits

n2

k1

n1

k2

Figure 3: Parallel concatenated block coding scheme

can be decoded iteratively following the approach
described in [2]. Since the component codewords
are mutually independent, they can be decoded
independently leading to a high degree of parallel
processing. In principle any SISO decoder can be
used to decode the component codes. The simu-
lation results presented in Section 6 are achieved
using a tail{biting MAP decoder based on the BCJR
algorithm [4]. Binary (periodically time{varying)
decoding trellises equivalent to the used CCs can be
found in [5].

5 Distance Properties of Tail{Biting Codes
for Use in Parallel Concatenation

5.1 The Two{Dimensional Weight Distribu-
tion

The weight distribution of a linear (n; k) block code C
is a polynomial

E(W ) =

nX
w=0

awW
w = 1+ a1W + : : :+ anW

n (11)

whose coe�cients aw denote the number of code-
words with Hamming weight w. The weight w of a
systematic codeword can be split up into two parts:

� The weight of the information bits u, denoted
by wI , and

� the weight of the parity bits p, denoted by wP .

Clearly, w = wI +wP . Similar to (11), we can de�ne
the two{dimensional weight distribution

E(I; P ) =
X
wI

X
wP

awI ;wP I
wIPwP ; (12)

which considers the information bits and the parity
bits separately, and counts the number awI ;wP
of codewords in C with information weight wI
and parity weight wP . The weight distribution
E(W ) is a property of the code, whereas E(I; P )
depends on the mapping between information bits
and code bits, and hence is a property of the encoder.

5.2 How to Choose Good Tail{Biting Com-
ponent Codes for Parallel Concatenation

5.2.1 The Minimum Distance of PCBCs

The total Hamming weight w of a codeword in a
PCBC consists of three parts:

� The weight of the k1k2 information bits, denoted
by wI ,

� the weight of the (n1 � k1)k2 parity bits from
horizontal encoding (C�), denoted by w�P , and

� the weight of the k1(n2 � k2) parity bits from

vertical encoding (C p), denoted by w p

P .

Clearly, w = wI + w�P + w p

P :



Now let us calculate the resulting minimum

distance dmin of a PCBC. By d C
�

min and d C
p

min we
denote the minimum distance of the component
codes C� and C p, respectively. Our aim is to obtain
a PCBC with high minimum distance. Hence,
for low information weights wI , we would like to
avoid pairing low parity weights w�P with low parity

weights w p

P .

Assume d C
�

min and d C
p

min are caused by codewords
with a single \1" among the k1 (or k2, respectively)
information bits. In this case, a single \1" among the
k1k2 information bits of the PCBC results in mini-
mum weight codewords of both the horizontal and
the vertical code (see Fig. 4a). Since there is no
other codeword of the PCBC with lower weight, the
resulting minimum distance of the PCBC is

dmin = d C
�

min + d C
p

min � 1: (13)

This situation is the worst case. The resulting dmin
would be larger if the minimum distances of both
component codes were not caused by weight{one in-
formation vectors. For example, suppose weight{two
information vectors result in the minimum distance
codewords and all weight{one information vectors
generate codewords of higher weight. In this case,
one of the bit patterns shown in Fig. 4b causes the
minimum distance of the PCBC. Which bit pattern

causes dmin depends on d C
�

min and d C
p

min, but in all
possible cases we have

dmin > d C
�

min + d C
p

min � 1: (14)

Following this discussion, we observe that, in
addition to the minimum distance of the component
codes, the mapping of the component encoders

11 wC
�

P
> d C

�

min
{ 1wC

�

P
= d C

�

min
{ 1

a) dmin = d C
�

min
+ d C

p

min
� 1 b1) w � d C

�

min
+ d C

p

min
+ 1

b3) w = 2d C
�

min
+ 2d C

p

min
� 4

wC
�

P
= d C

�

min
{ 2

wC
�

P
= d C

�

min
{ 2

1 1

11

wC
�

P
= d C

�

min
{ 21 1

b2) w � d C
�

min
+ 2d C

p

min

w
C
p

P

=
d
C
p

m

i
n

{
1

w
C
p

P

>

d
C
p

m

i
n

{
1

w
C
p

P

>

d
C
p

m

i
n

{
1

w
C
p

P

>

d
C
p

m

i
n
{
1

w
C
p

P

=
d
C
p

m

i
n
{
2

w
C
p

P

=
d
C
p

m

i
n

{
2

Figure 4: Bit patterns that could result in the mini-
mum distance of a PCBC

which produces their minimum weight codewords is
a very important criterion in choosing good codes for
parallel concatenation. Ideally, the encoders should
be designed in such a way that they map low weight
information words to high weight codewords. It is
obvious that this requirement cannot be achieved
with feedforward encoders of small memory, since in
this case a single input \1" in
uences only a small
number of codeword bits and therefore produces a
codeword of low weight. This fact motivates the use
of feedback encoders.

5.2.2 A Comparison between Feedforward and Feed-
back Encoders

To simplify the situation, in the remainder we sup-
pose the two component codes are identical, that is,
C� = C p. We compare three (512,256) PCBCs gener-
ated by using three di�erent (24,16) tail{biting com-
ponent codes with the encoding scheme depicted in
Fig. 3 | the component code C8A generated by ap-
plying tail{biting to the feedback encoder of Fig. 1,
and the codes C8B and C8C , de�ned by the polynomial
systematic generator matrices

C8B : GB(D) =

�
1 0 1 +D +D2

0 1 1 +D

�
; (15)

C8C : GC(D) =

�
1 0 1 +D +D2

0 1 1 +D +D3

�
: (16)

Table 1 shows parts of the two{dimensional weight
distributions of C8A, C

8
B , and C

8
C , respectively. Both

memory{2 codes C8A and C8B achieve a minimum dis-
tance of 3. The feedforward encoder of C8B maps 8
information vectors of weight one and 16 informa-
tion vectors of weight two to minimum weight code-
words (entries a1;2, a2;1). In contrast, the feedback
encoder of C8A generates all its minimum weight code-
words with weight{three information vectors (entry
a3;0), whereas weight{one information vectors and

wP !
wI #

0 1 2 3 4 5

C8A 0 1 0 0 0 0 0
1 0 0 0 0 8 0
2 0 0 24 0 72 0
3 8 0 136 0 304 0
4 10 0 392 0 980 0

C8B 0 1 0 0 0 0 0
1 0 0 8 8 0 0
2 0 16 16 16 28 32
3 0 24 56 128 152 96
4 8 32 184 384 498 416

C8C 0 1 0 0 0 0 0
1 0 0 0 16 0 0
2 0 0 32 0 56 0
3 0 32 0 208 0 288
4 4 0 384 0 1024 0

Table 1: Weight distributions of tail{biting codes



1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 1 2 3 4 5 6

Eb/N0 [dB]

BER

uncoded
CB (no feedback, m=2) is component code
CC (no feedback, m=3) is component code

CA (feedback, m=2) is component code

Figure 5: (512; 256) PCBCs: Comp. codes are the
(24,16) tail{biting codes C8A, C

8
B , and C

8
C , respectively

weight{two information vectors are mapped to code-
words of higher weight. The parallel concatenation
of code C8B yields a minimum distance dmin = 5 (en-
try a1;2), whereas the code C8A achieves dmin = 9
(entries a1;4 and a3;0). Thus, due to the larger mini-
mum distance of the PCBC, and due to the advanta-
geous mapping of information words to codewords,
we expect code C8A to perform better than C8B in par-
allel concatenated schemes. The simulation results
shown Fig. 5 con�rm these observations. Although
both component codes have a minimum distance of
3, and although they both have the same length and
complexity, using component code C8A in a PCBC
leads to a gain of 1.5 dB at a bit error rate (BER) of
10�5 compared to component code C8B .
Surprisingly, component code C8A also outperforms

component code C8C , although the latter code has a
larger minimum distance (dmin = 4) and twice as
many states (m = 3). The reason is once again
the mapping of information words to codewords.
The systematic memory{3 feedforward encoder of C8C
maps all weight{one input vectors to codewords of
minimum weight, and, hence, a PCBC using compo-
nent code C8C achieves a smaller minimum distance
(dmin = 7) than a PCBC using component code C8A.
The advantage of C8A over C8C in a PCBC arises from
the fact that the encoder of C8A, by means of feed-
back, avoids pairing low weight information words
with low weight codewords. For a BER of 10�5, a
PCBC generated with C8A outperforms a PCBC using
component code C8C by 0.4 dB (see Fig. 5).

6 Simulation Results

Rate{1/3 PCBCs: We apply tail{biting to the
simple rate{1/2 memory{2 encoder de�ned by the
systematic generator matrix

GD(D) =
�

1 1+D2

1+D+D2

�
: (17)

The underlying convolutional code CD has optimum
free distance dfree = 5. Examination shows that for
N � 10, tail{biting codes CND achieve a minimum dis-
tance equal to the free distance of CD. We choose, for

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 0.5 1 1.5 2 2.5 3 3.5 4

Eb/N0 [dB]

BER

uncoded
1st iteration

2nd iteration
3rd iteration
4th iteration
5th iteration

Figure 6: A (507; 169) PCBC: Parallel concatenation
of the (26,13) tail{biting code C13D of memory 2

example, N = 13, and obtain a (26; 13) tail{biting
code C13D . Its weight distribution is shown in Table 2.
The parallel concatenation yields a (507,169) PCBC
with dmin = 17. The simulated performance is
shown in Fig. 6. A BER of 10�5 is achieved at an
SNR of 2.9 dB after three iterations. Further itera-
tions do not improve the result signi�cantly.
Next, we concatenate (24; 12) tail{biting codes C12E

de�ned by

GE(D) =
�

1 1+D+D2+D4

1+D+D4

�
(18)

over N = 12 cycles which results in a (432; 144)
PCBC. From its performance curve (Fig. 7), we ob-
serve that almost no improvement compared with the
(507,169) PCBC of Fig. 6 is achieved, although we in-
creased the complexity of the tail{biting component
code by a factor of 4. This result becomes under-
standable if we consider the weight distributions of
C13D and C12E (Table 2). Both encoders map weight{
one information vectors to parity weight eight and
weight{two information vectors to parity weight four
(at least). In order to improve the performance, we
must increase the block length N . For example, con-
sider the (48; 24) code C24E de�ned by GE(D) with
N = 24. Now, all weight{one and all weight{two in-
formation vectors are mapped to high parity weights.
In addition, the code now achieves dmin = 7 which
is equal to the free distance of the underlying CC
CE . The resulting (1728; 576) PCBC has minimum
distance dmin = 25. A BER of 10�5 is obtained at
approximately 1.4 dB (six iterations), which is 0.6 dB
better than the value of the cut{o� rate R0 for rate{
1/3 codes. The coding gain of 1.3 dB compared to

BC E(I; P )

C13D 1+13I1P 8+13I2P 4+13I3P 2+13I4P 2+: : :

C12E 1+12I1P 8+18I2P 4+84I3P 4+12I4P 2+: : :

C24E 1+24I1P 12+96I2P 10+48I3P 4+72I4P 4+: : :

Table 2: Weight distributions of tail{biting codes



1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

0 0.5 1 1.5 2 2.5 3 3.5 4

Eb/N0 [dB]

BER N=12N=24

R0

uncoded
(432,144) PCC, 3rd iteration

4th iteration
5th iteration

(1728,576) PCC, 3rd iteration
4th iteration
5th iteration
6th iteration

Figure 7: (432; 144) and (1728; 576) PCBCs using
rate{1/2 memory{4 tail{biting component codes

the (432; 144) PCBC is certainly due to both the
larger block length and the better properties of the
component code.

We conclude that, although tail{biting is espe-
cially useful with short block lengths, the length of
the code should be large enough

� to achieve a minimum distance equal to dfree of
the underlying CC (if this is possible),

� to enable the encoder to map all weight{one in-
formation vectors to codewords of high weights,

� to enable the encoder to map low weight infor-
mation vectors to non{minimum{weight code-
words.

Rate{1/2 PCBCs: The performance of an
(800; 400) PCBC is shown in Fig. 8. As a compo-
nent code, the (30; 20) tail{biting code (dmin = 4,
m = 3, N = 10) de�ned by

GF (D) =

 
1 0 1+D2

1+D+D3

0 1 1+D3

1+D+D3

!
(19)

was employed.

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

0 0.5 1 1.5 2 2.5 3 3.5 4

Eb/N0 [dB]

BER

R0C

uncoded
1st iteration

2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration

Figure 8: A (800; 400) PCBC using rate{2/3
memory{3 tail{biting component codes

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

0 0.5 1 1.5 2 2.5 3 3.5 4

Eb/N0 [dB]

BER

R0C

uncoded
1st iteration

2nd iteration
3rd iteration
4th iteration
5th iteration
6th iteration

Figure 9: A (1536; 1024) PCBC using rate{4/5
memory{4 tail{biting component codes

Rate{2/3 PCBCs: Finally, we apply tail{biting
to the encoder

GG =

0
BBB@

1 0 0 0 1+D+D2

1+D+D2+D3+D4

0 1 0 0 1+D+D3

1+D+D2+D3+D4

0 0 1 0 1+D2+D3

1+D+D2+D3+D4

0 0 0 1 1+D+D2+D3

1+D+D2+D3+D4

1
CCCA (20)

to obtain a (40; 32) code of rate 4/5 (N = 8). The
BER of its parallel concatenation is shown in Fig. 9.
For comparison, Shannon's capacity limit, denoted
as C, is given.

7 Conclusions

Choosing good tail{biting component codes for use
in parallel concatenated coding schemes, it is im-
portant to use feedback encoders, which enable us
to pair low{weight information vectors with high{
weight parity vectors. We have shown how to en-
code tail{biting codes with systematic feedback en-
coders, and evaluated the performance of their par-
allel concatenation by simulation. Based on the two{
dimensional weight distribution of tail{biting codes
we have given guidelines how to choose good compo-
nent codes for use in parallel concatenated schemes.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, \Near
Shannon limit error{correcting coding and decoding:
Turbo-Codes," Proc. IEEE Int. Conf. Comm. (ICC),
Geneva, Switzerland, pp. 1064{1070, May 1993.

[2] J. Hagenauer, E. O�er, and L. Papke, \Iterative decoding
of binary block and convolutional codes," IEEE Trans. on
Inf. Theory, Vol. IT{42, No. 2, pp. 429{445, March 1996.

[3] G. Solomon and H. C. A. van Tilborg, \A connection
between block and convolutional codes," SIAM J. App.
Math., Vol. 37, No. 2, pp. 358{369, October 1979.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, \Optimal
decoding of linear codes for minimizing symbol error rate,"
IEEE Trans. on Inf. Theory , Vol. IT{20, pp. 284{287,
March 1974.

[5] I. E. Bocharova and B. D. Kudryashov, \Rational rate
punctured convolutional codes for soft{decision Viterbi
decoding," IEEE Trans. on Inf. Theory, Vol. IT{43, pp.
1305{1313, July 1997.


