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Abstract—Not all systems of pulse-coupled oscillators converge
to synchrony from any initial configuration. The probability
of synchronization depends on the network topology and the
phase response function. It is often assumed that all oscilla-
tors are governed by the same phase response function. We
exemplify that the synchronization probability can be signifi-
cantly increased by using node-individual (local) values for the
phase response parameter — rather than a single, global value.
This insight motivates research into algorithms for parameter
adjustment in self-organized network synchronization.

Index Terms—pulse-coupled oscillators, synchronization, self-
organization, emergence

1. Introduction

Synchronization occurs frequently in nature and is a
crucial feature in many engineered systems when distributed
entities must act in a coordinated manner —e.g., in commu-
nications and computing, transport, and energy. Synchrony
can be a desired or undesired system state: Fireflies flash in
synchrony to attract mates [1], heart pacemaker cells syn-
chronize to control the contraction of muscles [2], and de-
synchronization in electrical power grids can lead to serious
outages [3]. Synchronized movements of pedestrians could
pose a hazard to structures [4], synchrony of Internet routers
can lead to long-term congestion [5], and synchronization
of neurons is associated with Parkinson’s disease [6].

Many synchronization phenomena can be modeled with
pulse-coupled oscillators (PCOs). Each oscillator is a pe-
riodic system that follows an internal cycle. At one point
in this cycle, the oscillator emits a pulse. Other oscillators
receiving such a pulse adjust their internal cycle by changing
the oscillation frequency or phase (the current position on
the cycle). This interaction may bring the pulses of two
or more oscillators into alignment—they synchronize in
a distributed and self-adaptive way. Such a technique is
preferred over centralized ones if the network is dynamic
and single points of failure should be avoided.

A group of all-to-all coupled PCOs that advance their
phase by a fixed value on each pulse reception synchronize
for almost all initial conditions [7]. Conditions for this proof
of convergence can be relaxed, e.g., by utilizing different
response functions [8], [9], [10], considering delays [11],
[12], and using other network topologies [13], [14], [15],

[16]. The cited papers include proofs of convergence under
specific conditions. Other papers have shown that synchrony
is guaranteed when the phases of all oscillators are close
enough [17], [18] and that non-synchronizing states do exist
[13], [19]. Whether or not an arbitrary network of PCOs
synchronizes remains an open question.

The author team recently studied a phenomenon that
prevents synchronization in a network of PCOs [20]. This
raised the question of how probable it is that a system ini-
tialized with random phases eventually synchronizes. That
question was answered for a network with an underlying
star topology. The work at hand studies the synchronization
probability for other types of undirected networks, which
contain one or more cycles (in contrast to the cycle-free star
graph). As in [20], we use a piecewise linear, delay-advance
phase response function (prf) whose slope is controlled
by a response parameter a. Our goal is to determine the
probability of synchronization P starting from a random
point in the state space and study the impact of adjusting a
on P. The overall objective of our research activities in this
domain is to obtain an understanding of the fundamental
question: Is it beneficial to use node-individual a-values
rather than a single network-wide a-value as commonly
done? The answer would motivate techniques in which this
parameter is selected (and maybe adjusted) locally on each
oscillator. This paper is a first step in this direction.

Our contributions are threefold: First, we discuss the
possible non-synchronizing states and conditions favoring
their occurrence. Second, we propose to use the phase
response function — specifically its parameter a —as a po-
tential “screw” to make randomly initialized systems more
likely to synchronize. This proposition is motivated by nu-
merical findings on the synchronization probability for three
types of graphs. Third, we show that local adjustment of the
response parameter can further boost the synchronization
probability for these graphs. The findings give insights and
serve as motivation for a distributed algorithm to determine
the best a for each node. A corresponding algorithm is
subject of future work.

The rest of the paper is structured as follows: Section 2
defines the PCO model used. Section 3 introduces the types
of states that prevent synchronization. Sections 4 and 5 study
how the phase response parameter affects the synchroniza-
tion probability P, both as a global and a local parameter.
Section 6 concludes the paper.



2. Coupling model

An oscillator is a one-dimensional periodic system with
a phase 0 ranging from zero to one, which increases with
a constant speed of § = 1. On reaching one, the phase is
reset to zero and the oscillator emits a pulse. This is called
firing event. In a network of multiple oscillators, pulses are
transmitted instantaneously to all neighbors. An oscillator’s
reaction to a received pulse is given by the phase response
function (prf), here given by

ha(6) = {(1a)9 for < 0.5

1
a+(1—a)f ford > 0.5. M

A pulse that is received while € < 0.5 reduces the receiving
oscillator’s phase towards O (inhibitory coupling), whereas a
pulse received while 6 > 0.5 increases it towards 1 (excita-
tory coupling). The response parameter a € [0, 1] determines
how large the change in phase is. In the literature, this type
of prf is called delay-advance prf (or type-II prf due to its
relation to the response function of class-II neurons [8]).

3. Non-synchronizing states

The described PCO system will end up in one of three
states: it will either reach () a synchronized state, in which
all oscillators reach the firing threshold at the same time
indefinitely, (é¢) a locked state, in which the timings of
all oscillators’ pulse events lock onto a (non-synchronized)
periodic pattern, or (é¢¢) run into a deadlock state, in which
at least one of the oscillators is prevented from sending a
pulse (as described in [20]). The occurrence of deadlocks
is usually associated with a locked state in the remaining
(potentially unconnected) network.

Theoretically, the period of locked states can be much
longer than the typical time between two firing events. Em-
pirically, however, we have observed that the vast majority
of locked states in the networks studied has a period similar
to that of an individual oscillator.

Deadlock states can occur due to the inhibitory effect
from a received pulse. If a sufficient number of such pulses
is received frequently enough, the receiving oscillator may
never reach the firing threshold. In this situation, the re-
ceiving oscillator is in a deadlock. Any locked state in
which one or more oscillators are in a deadlock is called a
deadlock state. We know that deadlock states presuppose at
least one oscillator with enough links to be prevented from
firing [20]. The number of required links for a deadlock and
its likelihood are closely tied to the response parameter a.

Another mechanism that prevents synchronization is
an onset of chaos [21], [22]. The emergence of chaos is
commonly tied to specific setups and interactions [23] or
external signals [19], [22], [21]. Whereas noise is indeed
present in communication and computer systems, its effect
on the communication between nodes differs from that of
external signals in the above references. Additionally, we
only consider networks of identical oscillators that do not
distinguish between pulses from different neighbors, which
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Figure 1. Synchronization probability P for connected Erdds-Rényi graphs
of pulse-coupled oscillators over the (global) response parameter a. Each
curve represents a different graph. The overall trend of the synchronization
probability is similar among all graph realizations, however, for a few it
decreases again for large a. This figure is adapted from [20], where we
also discuss the occurrence of deadlock states being responsible for some
curves not converging to P = 1.

is paramount for the results in [23]. We therefore assume that
chaos will not play a major role in the following discussion.

In previous work on non-synchronizing states [20], we
observed the following for random graphs (see Fig. 1):
Locked states occur more often for small than for medium
to large a. Most random graphs synchronize almost certainly
for sufficiently large a, but some curves clearly show a
maximum in P for certain ¢ < 1 and then decrease with
a — 1. From the same work, we know that increasing a
beyond a critical value potentially introduces the probability
of a system running into a deadlock. The possibility of
deadlocks appearing (for large a) and the critical value
depend on the underlying topology.

Likewise, the probability P depends on the topology,
as it is the only difference between the systems simulated
for Fig. 1. To gain more insight of what specific aspects
of topology are relevant for this dependence, we now con-
sider two specific building blocks of networks (rings and
diamonds) and then combine them to a new type of topology
(which we call diamond bracelet).

4. Synchronization probability

The synchronization probability P for a network of n
oscillators is the relative volume of the configuration space
(Cn, = 10,1]™ C R™) for which the system converges to a
synchronized state (i.e., S, C C,, s.t. s € S,, converges to
a synchronized state): P = vol(S,,) / vol(C},). Convergence
to a synchronized state is guaranteed if at any time all
phases lie within a closed interval in the phase domain (i.e.,
R/1) of diameter one half [17]. We estimate P through a
Monte-Carlo simulation which is terminated on reaching the
convergence guarantee or detecting a periodic state.

We now study P as a function of a for three types
of undirected, connected graphs (shown in Fig. 2) to find
how different topologies affect P. We know from [13] that
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Figure 2. The three graph types under study: ring (with ng = 9), diamond (with np = 4), and diamond bracelet (with ngp = 9 and ng = 4).

ring graphs (Fig. 2 (a)) support a multitude of locked states.
Their number increases with the number of ring nodes np.
However, as every node has a degree of two, no dead-
locks are attainable [20]. Because loops in a graph seem
to promote the existence of locked states and high-degree
nodes allow for deadlocks, we consider a variant of the
diamond graph as our second investigated topology (Fig. 2
(b)). It has two high-degree peak nodes and np branch
nodes that form several loops. With every added branch
node, we incorporate more loops and increase the degree
of the peak nodes while keeping the loop size constant. As
a third topology, we combine ring and diamond (Fig. 2 (c))
by adding an np-diamond to every node of a ring of size
ng (i.e., we identify each ring node with a peak node of
one of ng diamonds with np branch nodes, linking these
diamonds at the selected peak nodes to form a ring). We
call this topology an (ng,np)-diamond bracelet.

For each of these topologies, we are interested in the
maximum achievable synchronization probability P and
the corresponding value of the response parameter a for
which this maximum is achieved. Reaching synchrony is a
commonly sought goal in networked computing and com-
munication systems. Exploiting the optimal a that provides
the best chance of achieving synchrony in a given network
(whose initial configuration cannot be controlled) is thus
relevant for the implementation of such systems.

4.1. Ring

A ring is a connected graph with ng > 3 nodes in which
each node is linked to exactly two other nodes. An example
is shown in Fig. 2 (a). Rings of PCOs allow for locked states,
which can be identified by symmetry operations [13]. The
larger n, the more potential locked states exist. There are no
synchronization deadlocks in rings because it takes at least
three neighbors to keep an oscillator in a deadlock.

We numerically study P as a function of a for five ring
sizes ng (see results in Fig. 3). Two basic observations can
be made: First, the choice of a has a strong impact on P; the
probability monotonically rises to one for increasing a. Sec-
ond, larger rings have a lower synchronization probability.

The locked states in rings form different patterns based
on npg, a, and the initial configuration. The possible patterns
are described in [12]. We most commonly observed wave
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Figure 3. Synchronization probability P for rings. A ring of ng PCOs
(almost) always synchronizes for a response parameter a = 1. Smaller
values of a sometimes converge to a locked state, where the probability
for such state happening from a random initial configuration increases with
decreasing a.

patterns with different wavelengths. Other patterns are also
possible but seem to occur less frequently.

Like random graphs, for small a, rings seem to converge
to locked states more often. Unlike random graphs, however,
they are incapable of exhibiting deadlocks. We next study a
graph that is capable of both.

4.2. Diamond

An np-diamond graph is an undirected graph of two
peak nodes and np branch nodes, where all branch nodes
are connected to both peak nodes. No other link exists in the
graph. An example is visualized in Fig. 2 (b). A diamond
with np = 2 is identical to a four-node ring. The np-
diamond (with np > 2) can exhibit both deadlock states
(for large a) and locked states (for small a).

Figure 4 shows P as a function of a. Non-synchronizing
states exist for small and large a; the maximum synchro-
nization probability is in between. All graphs tested show a
maximum P close to one, but the response parameter for this
maximum depends on np. For large a, the reduced synchro-
nization probability is due to deadlocks at the peak nodes;
for small a, it is caused by locked states. Locked states in
the low (but not the lowest) a regime (0.1 < a < 0.4) occur
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Figure 4. Synchronization probability P for diamonds. Very small a allow
for locked states, like in rings. As opposed to rings we observe deadlocks
for large a. The deadlock probability increases with n . Values are based
on 500, 000 simulations using random (uniformly drawn) initial phases.

more often for diamonds with fewer branch nodes. For very
low a < 0.1, the opposite is true, however, our simulations
suggest that P is similar for all ng > 3 in that regime.
In the high a regime, np-diamonds may exhibit deadlocks
and P is lower for higher np. This corresponds to our
results on star graphs, where the probability for the central
node suffering from a deadlock is higher if the number of
neighbors is larger [20].

We continue with a third graph that combines and
amplifies the tendencies observed. So far we have seen
that larger loops (in rings) and fewer loops (in diamonds)
increase the probability for locked states when a tends to
zero. Furthermore, nodes with a high degree are prone to
deadlocks for large a. We now construct a graph that allows
for one parameter (ng) to increase an underlying loop and
another (np) to increase the degree of certain nodes.

4.3. Diamond bracelet

An (ng,npg)-diamond bracelet consists of a ring with
ngr nodes and as many np-diamonds. The diamonds are
joined with the ring at one of their peak nodes, forming a
ring of np-diamonds. We distinguish between three types of
nodes based on their role in the graph structure: ring nodes
are the peak nodes in the diamonds at which they are con-
nected to other diamonds (inner peak nodes), branch nodes
describe all the branch nodes in all diamonds, and outer
peak nodes refer to the diamonds’ peak nodes that are not
connected to other diamonds. An example is visualized in
Fig. 2 (c). This graph contains a large loop of diameter np /2
and nr nodes with degree np + 2, the maximum degree in
the graph. Like the np-diamond, this graph exhibits both
locked states and deadlocks.

The simulation results in Fig. 5 show the following:
First, the synchronization probability in diamond bracelets
for large a is significantly lower than in the single diamond.
This is to be expected because a deadlock in any of the ng
diamonds prevents synchronization. Second, the maximum
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Figure 5. Synchronization probability P for (10,75 )-diamond bracelets
over the response parameter a. The position and height of the maximum
of P depends on the size of the diamonds. Values are based on 25,000
simulations using random (uniformly drawn) initial phases.

‘P that we already saw for the diamonds is even clearer now
and is lower than for a single diamond. Thus, the diamond
bracelet lets us more readily identify the maximum values
in order to find the optimal a for which it is achieved, while
keeping the basic behavior from the single diamond.

The diamond bracelet allows both types of non-
synchronizing states and has a clear optimum of the response
parameter, all with only two parameters to control the
graph. On this graph, we now study a localized approach
to improve the synchronization probability by choosing a
node-individual response parameter a; for each oscillator ¢
instead of a single global response parameter a.

5. Local response parameters

Synchronization of diamond bracelets is not always pos-
sible. Even an optimal choice of the response parameter a
brings the synchronization probability to a maximum value
of only 80 —90% (for ng < 7). The synchronization
dynamics are governed by the components (ring graphs and
np-diamond graphs) that make up the bracelet. We know
that these two types of components on their own display
optimum a at different values (see Figs. 3 and 4). It thus
stands to reason to try and assign an individual response
parameter to each oscillator rather than using a global one.
In the following, we exemplify that a system with node-
individual a can outperform one with a single, global a by
large in terms of the synchronization probability.

To find a set of a-values that would improve the syn-
chronization probability achieved by a global a, we first
simplify the problem. There are three types of nodes in
the diamond bracelet: ring nodes (index R), branch nodes
(B), and (outer) peak nodes (P). Due to network symmetry,
we cannot distinguish between any of the diamonds and
thus, in an optimal setup and without knowledge of the
initial configuration, all ring nodes have the same response
parameter ar. Likewise, all branch nodes would use ap and
all peak nodes ap. We find optima for these three parameters
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Figure 6. Synchronization probability (color coded) for three independent response parameters a (ring nodes), ap (branch nodes), and ap (outer peak
nodes). Results are shown for a ring with ng = 10 nodes and four different diamond sizes (ng = 3,.. ., 6). All graphs exhibit the highest synchronization
probability for large ar and ap. The parameter for the branch nodes ap achieving the highest synchronization probability decreases with growing np.

by conducting an exhaustive parameter scan. Prior to the
results shown, we ran a cursory parameter scan to find the
regions of interest. This cursory search suggests large values
for ap and apr, which are least likely to cause deadlocks,
and lower values for a p, which more easily cause deadlocks
at the peak nodes.

Figure 6 shows the synchronization probability P for
four different (10, np)-bracelets with up to six branch nodes
(np = 3,...,6) as a function of the three response pa-
rameters. Empirically, we see: The optimal synchronization
probability reaches values above 90% in all these cases.
The highest P are achieved consistently for large values of
ar and ap. The optimal choice of ap depends on np but
generally decreases with increasing np. The corresponding
curves for global a are shown for comparison.

As mentioned, the optimal choice for ap and ag barely
depends on the size of the diamonds. The ap associated
with the highest P, however, decreases with np. Intuitively,
this may be explained as follows: To synchronize the ring
nodes, Section 4.1 tells us that we need a large response
parameter. The branch nodes have no risk of running into
a deadlock, so ap may be chosen very large for a quick
synchronization with its neighbors. On the outer peak nodes
the degree is np. Since a larger degree increases the risk
of deadlocks, ap needs to be chosen smaller the larger np
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Figure 7. Synchronization probability P for several n g-diamond bracelets
with node-individual response parameters. As motivated by Fig. 6, only
the peak node parameter a p is varied. The arrows approximately mark the
maximum P, whose position decreases with np. For reference the plot
shows the corresponding P curves using global a in gray. Values are based
on 200, 000 simulations using random (uniformly drawn) initial phases.

is. Figure 7 shows P for several (10,np)-bracelets with
ar = 0.94 and ap = 0.98 as a function of ap. The
maximum probabilities are marked in each curve and display
the mentioned tendency for the optimal ap to shift towards



lower values for increasing np. Due to the flatness of
the curves around the maximum, an exact location for the
maximum is hard to determine.

Given this exemplary result, it is fair to assume that a
localized choice of response parameters has the potential
to considerably outperform the global choice not only in
diamond bracelets but also in other graphs. We also see that
the optimal choice of parameters depends on the topological
function of a node. In reality, it is impractical to always scan
the entire parameter space (especially when considering that
we generally operate with far more dimensions). Developing
a distributed algorithm that chooses the a-value for each
node based on local information might be the solution.

6. Conclusions and Outlook

It is known that self-organized synchronization via cou-
pling of oscillators cannot always be guaranteed. If the net-
work topology is beyond our control but the individual nodes
are not, we can adjust the response parameter to increase the
synchronization probability. We demonstrated that diamonds
and diamond bracelets, which allow for locked states and
deadlocks, have a maximum P that depends on network
parameters (np and ng). Using node-individual response
parameters achieves a larger P than using a global one
for these topologies. It remains open if suitable response
parameters can be calculated using a distributed algorithm,
ideally even with only local knowledge. It also remains open
if these benefits transfer to other network topologies.

Further research could investigate whether localized re-
sponse parameters have benefits that go beyond synchroniza-
tion guarantees. Other performance metrics include synchro-
nization speed as well as robustness against disturbances and
dynamic changes of the topology. Furthermore, a combina-
tion of localized parameters and stochastic coupling (to pre-
vent deadlocks [17]) could lead to advanced synchronization
solutions for self-adaptive networked systems.
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