
Some Notes on Security in the
Service Location Protocol Version 2 (SLPv2)
Marco Vettorello, Christian Bettstetter, and Christian Schwingenschlögl
Technische Universität München (TUM), Institute of Communication Networks, Munich, Germany

Email: Marco.Vettorello@gmx.it, Christian.Bettstetter@ei.tum.de, Christian.Schwingenschloegl@ei.tum.de

Abstract. Service discovery protocols help users of a communication network to find services, applications, and
devices that are available in the network. This feature is especially useful for mobile users in foreign networks and for
groups of users that form a spontaneous (ad hoc) wireless network. As the demand for service discovery is growing,
security is becoming an important concern. This paper discusses security in the IETF Service Location Protocol version 2
(SLPv2). We comment on a few security leaks in SLP and propose simple modifications in the SLP specification that
make the protocol more resistant against replay attacks. Our method stores the timestamps received in service registration
and deregistration messages. Furthermore, we suggest to change authentication keys after a service deregistration. Our
SLPv2 implementation (TUM–SLP) demonstrates the fundamental service discovery features as well as authentication
mechanisms based on DSA signature verification.

Keywords. Service discovery protocols, service location protocol, authentication, security, ad hoc networking.

1 Introduction

Service discovery protocols enable users of communication networks to find services, applications, and devices
that are available in the network. In particular, they allow to search or browse for a service that fulfills a certain
task. This feature is especially useful for mobile users (with notebooks, network–enabled PDAs, or mobile
phones) in a foreign network and for groups of users that form a spontaneous (ad hoc) wireless network.

In such an environment, services automatically advertise themselves supplying details about their features
and information required to access them. Users or applications can locate a service by asking for a particular
service type (e.g. printer) and may make an intelligent service selection in case multiple services of the desired
type are available. Besides the added value for the user, service discovery protocols also remarkably reduce the
network administration load, especially when new services are to be introduced in a large network.

The following example illustrates the usefulness of service discovery: A business man is traveling on a
plane. There are several facilities installed on the plane, such as a printer, a scanner, a fax machine, and a
network access point to the Internet. If the business man likes to print out some handouts or slides for his
presentation in the afternoon, he will first have to find out what type of printer is present, then install the device
drivers to be able to print. If a service discovery protocol is installed, it will automatically detect and configure
these services, relieving the user from any manual setup operation. Service discovery also provides useful
characteristics of the discovered services, e.g. printer resolution and color capabilities.

Examples for service discovery protocols include the Service Location Protocol (SLP) [1][2], Jini [3],
Universal Plug and Play (UPnP) [4], and Bluetooth’s SDP [5].

This paper considers SLP version 2 [6], discusses its security features, and introduces our implementation
TUM–SLP. After an overview of basic functionality of the SLPv2 protocol (Section2), we explain its security
mechanisms (Section 3). In Section4 we discuss possible replay attacks against SLP. For example, we consider
that an attacker eavesdrops on an SLP message and is able to change attributes of the service at a later time or
even fake the identity of a particular service. We then propose extentions to the protocol that make SLP more
robust against these attacks. Finally, in Section5, we present our TUM–SLPv2 implementation. Section6
concludes this paper.

2 Service Location Protocol Version 2 (SLPv2)

The service location protocol (SLP) has been designed and developed by the SrvLoc working group of the
Internet Engineering Task Force (IETF). The specification of version 2 of the protocol can be found in [6]. It is
designed for TCP/IP networks, and scales from small networks with only a few devices up to large enterprise
networks. The protocol defines three agents that process SLP information: User Agents (UA) are searching
for a service on behalf of the user or application; Service Agents (SA) are entities providing the location and
description of a service; and Directory Agents (DA) work as a central repository for SLP information.

a)

Directory Agent

User Agent
Service Agent

SrvRegSrvRqst

SrvRply
SrvAck

b)

Printer Scanner DAT Tape drive

"service:scanner"
SrvRqst

Service Agent 1 Service Agent 2 Service Agent 3

User Agent

SrvRply

Multicast group 239.255.255.253:427

Figure 1: SLP architecture: (a) with DA, and (b) without DA

Figure1a illustrates the basic functionality of the protocol. The SA, which is e.g. located inside a printer,
registers the device with the DA. During a registration process, the SA informs the DA about the URL (Uniform
Resource Locator) and a set of attributes that describe the service (SrvRegmessage). If a user, represented by
the UA running on the notebook, wishes to discover a printer, he or she can send a service request (SrvRqst) to
the DA. Optionally, he or she can specify some attributes that the service should have (e.g. color printer). If the
DA finds a service in its repository that matches the request, it returns aSrvRplymessage that informs the user
about the URLs of the found services. SAs can deregister their entry using aSrvDeregmessage.

Since the address of the DA is not available to any other agent, the SA and UA can perform active DA dis-
covery. They multicast a request specifyingservice:directory-agentas the desired service to the SLP multicast
group address 239.255.255.253 on port 427 (both specified in [6]). All DAs in the network listen to this port
and reply with a unicastDAAdvertmessage to the requesting agent. DAs also advertise themselves by sending
unsolicitedDAAdvertsto announce their presence. This discovery method is called passive DA discovery, and

SAs and UAs can extract the DA’s address from theDAAdvert,as they do when performing active DA dis-
covery. The third method to obtain the address of a DA is through static discovery via DHCP (Dynamic Host
Configuration Protocol [7][8]).

Like most of the other service discovery protocols, SLP is administratively scoped. This means that the
protocol locates resources (devices and services) available in a network within an administratively defined
network domain. Users belonging to a certain scope may only discover services that are offered in this scope;
other services are hidden by the DA.

As an optional feature, SLP allows users to request the attributes of a certain service or a type of service.
To do so, a UA can send out an attribute request message (AttrRqst). A query of the attributes of a specific
service is done via the service URL. If a UA sends anAttrRqstby service type, the DA returns all attributes of
all services of the requested type in the scope. The latter feature is particularly interesting if a user wants to
browse through the services.

The system architecture shown in Figure1a is not the only possibility to deploy SLP in a network. In fact, a
DA is only needed in large networks. When a DA is not present, UAs can apply active SA discovery in the same
way they discover DAs. The UAs receive aSAAdvertin reply. Furthermore, UAs can send theirSrvRqststo the
SLP multicast group. If a certain SA supports the service specified in the query, it will send a unicastSrvRply
back to the requesting agent. SAs that do not advertise the requested service discard theSrvRqstmessage and
continue to listen to the multicast address for incoming requests. Figure1b shows such a scenario, in which the
user is searching for a scanner. He or she sends aSrvRqstto the multicast group specifyingservice:scanneras
the desired service type. SA2 supports the scanner and responds unicasting aSrvRplyto the UA. As the DAs
in the previous scenario, SAs can periodically multicastSAAdvertsto inform UAs about their presence in the
network. In this paper, we do not consider this mode of operation but assume that a DA is present.

3 SLP Security

As we have seen in the previous section, service discovery means that users may use services in foreign net-
works. This obviously creates immense security problems for both the mobile user and the network owner. In
this section, we describe the inherent authentication features of SLPv2.

3.1 Authentication using Digital Signatures

Authentication is an optional feature in SLPv2. It is based on public key cryptography and enables the protocol
to guarantee that the received service information has been transmitted by trustworthy SAs and DAs. The
sender of an SLP message includes a digital signature, which is calculated over selected parts of SLP messages.
Signatures are generated for URL entries, attribute lists,SAAdverts,andDAAdverts[6].

The trust relationship between the DA and the SAs is established by the network administrator. He or she
sets up the services in the network and supplies them with the correct public and private keys. This ensures the
mutual trustworthiness of both agents.

The trust relationship between the DA and the UAs involves two main problems: First, on the DA’s side,
the question is how to make sure that UAs do not access restricted services. This task must be solved by a
higher level protocol and is not a duty of SLP. Second, the problem for the UA is how to ensure that the DA is
trustworthy. To eliminate the risk that a UA communicates with a bogus DA, it is necessary to supply the UA
with the public keys of the legitimate DA in a secure way. With a correct public key of the DA, the UA can
discard incorrectly signedDAAdverts.

Let us give an example: An SA includes a digital signature in itsSrvRegmessages. A DA then verifies the
signature before registering or deregistering any service information coming from this SA. The SA generates the

signature with its private key, and the DA can check the signature with the public key of the SA. Furthermore,
the DA includes the signature of the respective SA inSrvRplymessages to UAs. With this principle, UAs can
be sure that replies toSrvRqstscome from trustworthy agents. Service information with incorrect signatures is
discarded. We can request e.g. a service of typeservice:ldapand trust that the service URLs obtained in the
SrvRplymessage are trustworthy LDAP servers.

3.2 Authentication Block

The digital signature is placed in an authentication block that contains additional information needed to verify
the signature. The authentication block has the format shown in Figure2.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 0 byte 1 byte 2 byte 3

Timestamp

Block Structure Descriptor Authentication Block Length

SPI String Length

Digital Signature

SPI String (variable)

Figure 2: SLPv2 authentication block

The last field in the block contains the signature. The Block Structure Descriptor (BSD) identifies the algo-
rithm that was used to calculate the signature. The default digital signature algorithm is the Digital Signature
Algorithm (DSA) [9] with Secure Hash Algorithm 1 (SHA–1) [10], although other algorithms may be used. A
timestamp informs the receiver when the signature expires. The Security Parameter Index (SPI) identifies the
keying material and algorithm parameters for authentication. With the SPI and the BSD, the receiving agent has
enough information to verify the signature. In the next sections, the generation and verification of the signature
are described in more detail.

3.3 Signature Generation

As mentioned above, authentication blocks are included inSAAdvertsandDAAdvertsand whenever a URL
entry or an attribute list is present in a message. To give an example, Figure3 shows the relevant bytes used to
authenticate a URL entry. This sequence of bytes is first processed by the SHA–1 algorithm (see Fig.4), which
creates a hash of the data. Applying the DSA algorithm, the signature generator then calculates the signature
over the hashed bytes. Finally, the signature is ready to be included in the authentication block of Fig.2.

3.4 Signature Verification

Upon receipt of an authentication block, the receiving agent derives from the BSD the algorithm to be applied
to authenticate the signature. Subsequently, it checks whether the SPI in the block matches an SPI in its own
list of supported SPIs. If the SPI is known by the agent, it can select the public key and the other parameters
indicated by this SPI and then attempt to verify the signature. This involves two steps (see Fig.5): First, it
creates a hash over the relevant input bytes. Then, it decrypts the signature by applying the public key, thus
obtaining the hash that the signing agent computed. If both hashes are equal, the signature has been verified.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

byte 0 byte 1 byte 2 byte 3

Timestamp

URL String Length URL String (variable)

SPI String (variable)SPI String Length

Figure 3: URL signature input bytes

SHA−1 DSA sign

private key

input

bytes

signature

Figure 4: Signature generation

If the SPI in the block does not appear in its list of supported SPIs, anAuthenticationUnknownerror is
returned. If the signature fails to verify, the agent returns anAuthenticationFailed.

statement
SHA−1

input

bytes

verification

public key

DSA verify

signature

Figure 5: Signature verification

4 Discussion of SLP Security

Although the current SLP authentication mechanism offers basic protection against active security attacks, it
has a few leaks that make the protocol vulnerable in certain situations. This section presents some realistic
attack scenarios and proposes appropriate countermeasures.

4.1 Replay Attacks and Countermeasures

Many attacks against computer security are based on eavesdropping on messages during a transaction between
a client and a server. A recorded message can be sent out by the attacker in a later moment. The attacker might
thus be able to spoof a legitimate service, to impersonate it, and to fool other agents that do not realize its fake
identity. In a service discovery scenario, a malicious device could e.g. record a message sent from an SA to a
DA and replay it at a later time. Such replay or impersonation attacks represent a serious threat for SLP.

Scenario 1 We consider the scenario illustrated in Figure6: An SA deregisters a certain service and an
intermediary attacker eavesdrops on theSrvDeregmessage. If the SA re–registers the service, the attacker
can fake the identity of the SA and reissue the storedSrvDereg.The fooled DA successfully authenticates the
message and deregisters the service.

SA DA

Attacker

SrvDereg S

SrvReg S’

SrvDereg S

Figure 6: Replay attack, example 1

Scenario 2 A harmful replay attack would also occur in the situation depicted in Figure7: At time t1 an
SA registers the serviceS whose lifetime expires at timet4. An attacker eavesdrops on theSrvRegmessage
and stores it. The network administrator decides to modify some attributes associated withS and therefore
re–registers the updated service at timet2, which entirely replaces the entry forS. The attacker now replays
the registration made by the SA att1. If the lifetime ofS has not expired yet (i.e.,t4 is still in the future), the
attacker’s message replaces the legitimate registration made att2.

DA

SA DAt1

SA DAt2

t4 Lifetime of S expires

t5 Lifetime of S should expire

Attacker

Attacker

SrvReg S

SrvReg S’
Timestamp expires at t5

Timestamp expires at t4
Replay of SrvReg S

Timestamp expires at t4

t3

Time

Figure 7: Replay attack, example 2

Scenario 3 The scenario in Figure8 is slightly different from the previous example. An SA registers a
printing serviceS at time t1 that expires at timet10. The attacker eavesdrops on thisSrvRegand caches it.
At time t5 the administrator decides to shut down the service and deregistersS. The attacker has now enough
time to impersonate the SA (e.g. through IP spoofing). During the time intervalt5 . . . t10 he or she receives all
documents that users send to the pretended printing service.

Proposed Security Features The risk for the described replay attacks can be limited by simple modifications
in the SLP specification. We propose the following principle: The DA caches the timestamps of received
authentication blocks. To send a new message, an SA always uses a timestampt′′ that is larger than the
timestamp included in the previous message (t′). The DA compares the timestamp of a received message
(t′′) with the old (cached) timestamp (t′) and accepts only messages witht′′ > t′. Since the timestamp in
a SrvDeregis set to the current time and cannot be larger than the expiration time of the advertisement, two

DA

Attacker

Attacker

SA DA

SA DA

SrvReg S

Replay of SrvReg S

Time

Timestamp expires at t10

SrvDereg S

t1

t5

Timestamp expires at t10
t6

Figure 8: Impersonation attack

separate timestamp caches are used forSrvRegandSrvDeregmessages. The mentioned replay attacks can be
driven back with these methods, since the smaller timestamp in the replayed messages causes the DA to reject
them.

A problem occurs if an SA erroneously sends aSrvRegwith an unreasonable long lifetime, and an attacker
eavesdrops on this message. By employing the discussed method, there is no possibility to set the lifetime back
to a reasonable value. The administrator could perform a manual change in the DA to set back the cached
timestamp, but this would not hinder the attacker to replay the recordedSrvRegat a later time. A solution to
this problem would be to let the SA change (or even delete) its public/private key pair after theSrvDereg. If
after aSrvDeregperformed by the legitimate SA the attacker issues the eavesdroppedSrvReg, the DA will not
authenticate it. This method could also be adopted to reject the impersonation attack of Scenario 3.

4.2 Denial of Service Attacks

The proposed countermeasures can provide efficient defense mechanisms against the presented replay attacks.
However, another sort of attack is still possible. Imagine a situation where the attacker modifies the timestamp
in an authentication block of an eavesdroppedSrvRegand sets it arbitrarily larger in order to have the DA
accepting it. The DA would not discard theSrvRegstraight away, rather it would attempt to verify the signature.
Although the message will be discarded, the DA consumes processing resources to verify the signature. During
this process it is inhibited from responding to other requests.

4.3 How much security does SLP need?

We can say that SLP security is for authenticating service advertisement messages and not the services that are
advertised. Furthermore, it is a property of the network rather than of one single agent.

When security is enabled, important limitations are imposed on how a DA handles the reply to a request
by a UA. Since the DA does not process the authentication blocks accompanying aSrvRegin any way, it must
include exactly the same bytes submitted by the SA during the registration. The UA calculates a hash on the
raw bytes of the message, thus the blocks would be invalidated if there are any differences in case or ordering.
For this reason, when security is enabled and a UA performs anAttrRqst, no attribute must be specified in the
query, that is to say the full list of attributes must be returned by the DA to avoid the invalidation of the blocks.

The implementation of security mechanisms adds a considerable amount of complexity to the protocol.
One might even take the position that authentication may invalidate the claim of SLP to reduce administrative

workload, as a certain amount of overhead is required to establish key information trust and is a sort of disin-
centive to SLP deployment. On the other hand, if security is not implemented, the protocol will be exposed
to several attacks that would not encourage the deployment of SLP. A good decision would be to always add
security features to SLP implementations and allow network administrators to enable security if they feel it is
necessary and worth the work of key delivery and related configuration.

5 Our SLPv2 Implementation (TUM–SLP)

The first beta release of our SLPv2 implementation, presented in [11], had the aim to demonstrate the fun-
damental functionality of SLP in action. The essential features were implemented in C and allowed basic
transactions between the three agents over UDP sockets. The current second release (TUM–SLP v0.2) adds
security mechanisms and service lifetime expiration (“leasing”) to the protocol implementation.

The TUM–SLP implementation is based on an architecture that consists of one DA, one or more SAs, and
one or more UAs. The presence of a DA is mandatory. All agents can be run on the same or on different Linux
computers.

Once running, the DA announces its presence in the network by multicastingDAAdvertsand then listens
for messages from SAs and UAs. An SA can register a service using aSrvRegmessage. The description of
the service is then stored in a file following the service template notation of SLP [12]. Updating, adding, or
removing an attribute from the present list of attributes is also possible withSrvReg.Service deregistration is
performed bySrvDeregmessages. UAs can sendSrvRqststo the DA and specify the desired attribute. The
optional messagesSrvTypeRqstandSrvTypeRplyare not implemented yet.

A sample output of a DA, upon receipt of aSrvRqstcoming from an agent that performs active DA discov-
ery, is the following:

*** SLP-packet received from 129.187.222.100:1181

Version: 2

Function Code: 1 ----> SrvRqst

Message Length: 58

Flags: O=0 F=1 R=1

Extension Offset: 0

XID: 26466

Language tag: en

Previous responder string:

Service type string: service:directory-agent

Scope list string: lkn

Query string:

*** End of packet

Send DAAdvert to 129.187.222.100:1181
XID 26466

5.1 Security Features

SLP authentication can be activated by selecting the option-s on startup of an agent. If authentication is
enabled, a UA can only perform a URL–basedAttrRqstwithout specifying any attributes in the query. Further-
more, only removal of the entire service registration is allowed for SAs.

DA SA UA
SPI Key SPI Key SPI Key

marc private marc public marc public
chris public chris private chris public

Table 1: Sample agent configuration

The hashing of the data, the generation and verification of the signatures are performed by the Cryptlib v3
library [13].

All agents are pre–configured with SPIs that refer to public/private keys. Let us assume, the agents are
configured as shown in Table1. The SA calculates the signature with SPIchris and includes this SPI in the
authentication block. The UA and the DA, having access to the public key associated with SPIchris, can verify
the signature. On query, the UA specifies the SPImarcwhen it is looking for a DA and the SPIchris when it
issues aSrvRqst.This leads the receiving agent to reply with blocks calculated with the same SPI as specified
by the UA. Basically, the agents that generate signatures (DAs and SAs) store the private and public keys and
parameters in a file. We store the keys generated by the DA and the SA in two distinct files:da keysetand
sa keyset,respectively. Each private and public key in a file is identified by the SPI. When an agent receives an
authentication block, it extracts the SPI and attempts to read the corresponding public key. The private keys are
protected by a password, which is known only to the agent owning the file. Each agent should have access to
both key set files: The DA must authenticate the messages it receives from the SA. The SA must authenticate
the replies andDAAdvertsit obtains from the DA. The UA must verifyDAAdverts(signed by the DA) and the
replies (containing the signatures originally calculated by the SA).

5.2 Interworking with K&A SLP

To evaluate the compliance of the TUM–SLP agents to the SLP standard, we made interworking tests between
between TUM–SLP and K&A SLP (Kempf and Associates SLP, available athttp://www.srvloc.org).
The K&A SLP DA daemon is running on a Windows PC, while SAs and UAs have been started on Linux PCs.
The two implementationssuccessfully communicate over the SLP port 427, although ephemeral ports are used
for replies. Figure9 is an extract of the output of the K&A SLP DA daemon log file. It shows the repository of
the DA daemon after aSrvRegfrom the TUM–SLP SA.The interworking of the security features of TUM–SLP
could not be tested, since K&A SLP does currently not support authentication.

6 Conclusions and Outlook

The service location protocol SLPv2 enables automatic service discovery in dynamic networking scenarios.
It offers much comfort for (mobile) users and network administrators. However, security is a critical (and yet
unsolved) issue in these scenarios. In this paper, we have identified security leaks in SLP that make the protocol
vulnerable against replay attacks. We proposed solutions that make the protocol less vulnerable. The presented
TUM–SLP v0.2 is one of the first implementations to demonstrate the security mechanisms of SLPv2. Its
source code will be released under GNU public license (GPL) in the near future. At the moment, we are
developing a graphical user interface, which will add more user comfort to service searching and browsing.

A topic for further research is efficient key distribution in SLP. A potential approach to make key distribution
easier, could be to have SLP itself distribute the keys to all agents, maybe by introducing a new message type
which allows to configure the security parameters of an agent.

http://www.srvloc.org

Fri May 11 12:10:56 2001:From client ‘‘129.187.222.179’’ on UDP interface:port (129.187.222.168:427):
Registering service URL:service:printer:lpr://129.187.222.129/
Fri May 11 12:10:56 2001: #****** Service Table Dump Start *******
Fri May 11 12:10:56 2001: #Remaining Time:2000
Fri May 11 12:10:56 2001: service:printer:lpr://129.187.222.129/,en,2000,service:printer
Fri May 11 12:10:56 2001: scopes=lkn
Fri May 11 12:10:56 2001: printer-uri-supported=lpr://lkn.ei.tum.de
Fri May 11 12:10:56 2001: uri-authentication-supported=none
Fri May 11 12:10:56 2001: uri-security-supported=none
Fri May 11 12:10:56 2001: printer-name=lj4050
Fri May 11 12:10:56 2001: printer-location=Mobile Communications Lab
Fri May 11 12:10:56 2001: printer-info=B/W laser printer
Fri May 11 12:10:56 2001: printer-make-and-model=HP LaserJet 4050 N
Fri May 11 12:10:56 2001: natural-language-configured=en
Fri May 11 12:10:56 2001: natural-language-supported=en
Fri May 11 12:10:56 2001: printer-document-format-supported=unknown
Fri May 11 12:10:56 2001: compression-supported=none
Fri May 11 12:10:56 2001: #******Service Table Dump End *******
Fri May 11 12:10:56 2001:From client ‘‘129.187.222.179’’ on UDP interface:port (129.187.222.168:427):
Return message is: Version:2 Function code:5 Length:18 Flags:0x0 XID:0xcd48 Option offset:0
Language tag:en Character encoding:UTF8 Status code:0 Previous responders:

Figure 9: Interworking: TUM–SLP and K&A SLP

Acknowledgement

The authors would like to thank Erik Guttman for the discussion with him about SLP vulnerability.

References

[1] E. Guttman, “Service location protocol: Automatic discovery of IP network services,”IEEE Internet Computing,
pp. 71–80, July 1999.

[2] J. Kempf and P. S. Pierre,Service Location Protocol for enterprise networks. Wiley, 1999.

[3] “The community resource for Jini technology.” http://www.jini.org, 2001.

[4] “Universal plug and play forum.” http://www.upnp.org, 2001.

[5] “Bluetooth specification (version 1.1) - core, part E: Service discovery protocol (SDP),” 2000.

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location protocol, version 2 (IETF RFC 2608),” June
1999.

[7] R. Droms, “Automated configuration of TCP/IP with DHCP,”IEEE Internet Computing, pp. 45–53, July 1999.

[8] C. Perkins and E. Guttman, “DHCP options for service location protocol (IETF RFC 2610),” June 1999.

[9] Digital Signature Standard. NIST, 2000. FIPS PUB 186-2.

[10] Secure Hash Standard. NIST, 1995. FIPS PUB 180-1.

[11] C. Bettstetter and C. Renner, “A comparison of service discovery protocols and implementation of the service loca-
tion protocol,” inProceedings EUNICE 2000, (Twente, Netherlands), Sept. 2000.

[12] E. Guttman, C. Perkins, and J. Kempf, “Service templates and service: Schemes (IETF RFC 2609),” June 1999.

[13] P. Gutmann,Cryptlib v3.0. http://www.cs. auckland.ac.nz/˜pgut001/cryptlib, 2000.

	Introduction
	Service Location Protocol Version 2 (SLPv2)
	SLP Security
	Authentication using Digital Signatures
	Authentication Block
	Signature Generation
	Signature Verification

	Discussion of SLP Security
	Replay Attacks and Countermeasures
	Denial of Service Attacks
	How much security does SLP need?

	Our SLPv2 Implementation (TUM--SLP)
	Security Features
	Interworking with K&A SLP

	Conclusions and Outlook

