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Abstract— Fireflies exhibit a fascinating phenomenon of spon-
taneous synchronization that occurs in nature: at dawn, they
gather on trees and synchronize progressively without relying
on a central entity. The present article1 reviews this process
by looking at experiments that were made on fireflies and the
mathematical model of Mirollo and Strogatz [1], which provides
key rules to obtaining a synchronized network in a decentralized
manner. This model is then applied to wireless ad hoc networks.
To properly apply this model with an accuracy limited only to
the propagation delay, a novel synchronization scheme, which
is derived from the original firefly synchronization principle, is
presented, and simulation results are given.

I. I NTRODUCTION

In certain parts of South-East Asia alongside riverbanks,
male fireflies gather on trees at dawn, and start emitting flashes
regularly. Over time synchronization emerges from a random
situation, which makes it seem as though the whole tree is
flashing in perfect synchrony. This phenomenon [2] forms
an amazing spectacle, and has intrigued scientists for several
hundred years. Over the years, two fundamental questions have
been studied: Why do fireflies synchronize? And how do they
synchronize?

The first question led to many discussions among biologists.
In all species of fireflies, emissions of light serves as a means
of communication that helps female fireflies distinguish males
of its own species: the response of male fireflies to emissions
from females is different in each species. However it is not
clear why in certain species of fireflies, males synchronize.
Several hypothesis exist: Either it could accentuate the males
rhythm or serve as a noise-reduction mechanism that helps
them identify females [3]. This phenomenon could also enable
small groups of males to attract more females, and act as a
cooperative scheme [3].

Although the reason behind synchronization is not fully un-
derstood, fireflies are not the only biological system displaying
a synchronized behavior. This emergent pattern is present in
heart cells [4], where it provides robustness against the death
of one or more cells, and in neurons, where it enables rapid
computation [5]. Among humans, synchronization also occurs.
For example, women living together tend to synchronize their

1A preliminary version of this paper was presented at 3rd workshop of the
ESF-funded scientific program MiNEMA, Leuven, Belgium, February 2006.
The authors would like to acknowledge MiNEMA for their support.

menstrual periods [6], and people walking next to each other
on the street tend to walk in synchrony.

In Section II, we look at experiments that have been made
in order to comprehend the synchronization mechanism. In
particular, we focus on experiments made on fireflies and
how this affected their flashing instants, providing interesting
insights to compare nature with mathematical models.

In biological systems distributed synchronization is com-
monly modeled using the theory of coupled oscillators [7]. For
fireflies, an oscillator represents the internal clock dictating
when to flash, and upon reception of a pulse from other
oscillators, this clock is adjusted. Over time, synchronization
emerges, i.e. pulses of different oscillators are transmitted
simultaneously. Synchronization in populations of coupled
oscillators lies within the field of discrete nonlinear dynamics.
A theoretical framework for the convergence to synchrony
in fully-meshed networks was published in [1]. This model
will be presented in Section III, and will serve as a basis
for deriving a suitable synchronization algorithm for wireless
systems.

The Mirollo and Strogatz model of [1] has already been
applied to wireless networks. One of the first papers to
apply the firefly synchronization model to wireless networks
was [8]. It utilized the characteristic pulse of Ultra-Wide-
Band (UWB) to emulate the synchronization process of pulse-
coupled oscillators, and included more realistic effects such as
channel attenuation and noise.

To lift the restriction of using UWB pulses and apply the
model of [1] to wireless systems, delays need to be taken into
account. Both models of [1] and [8] assume that fireflies form
a fully-meshed network and communicate through pulses.
However pulses are hardly considered for communications in
a wireless environment, because they are difficult to detect.

To reflect more realistic effects such as message delay and
loss, [9] proposed to synchronize using a low-level timestamp
on the MAC layer. The principle is similar to the original
firefly synchronization scheme, in the way that each node
adjusts its clock when receiving such a timestamp. Because
timestamps need to be exchanged, the approach of [9] tries to
avoid the ideal case of the Mirollo and Strogatz model where
all nodes transmit simultaneously. This case creates too many
collisions, which prevails nodes from synchronizing. How-
ever, from a physical layer perspective, all nodes transmitting



synchronously a common word can help a faraway receiver
synchronize and communicate with the rest of the network,
because it receives the sum of all transmitted powers (known
as the reachback problem). Hence, unlike data transmission,
a synchronization process where all nodes transmit the same
word is not affected by collisions in a similar way to flooding.
Taking advantage of a common synchronization word also
helps the network synchronizing quicker.

Therefore our approach, which also integrates realistic ef-
fects such as transmission delays, bases the synchronization
algorithm entirely on the physical layer. This has several
advantages over [9] such as the fact that collisions are in fact
a benefit to the scheme and the time to reach a synchronized
state is shorter because there is no random backoff. This
synchronization strategy, which was first introduced in [10]
and is presented in Section IV, combats transmission and
processing delays by modifying the intrinsic behavior of a
node. Differently from [10], the present paper studies similar-
ities between experiments made on fireflies and mathematical
interpretations that have been made, and deepens the analysis.

II. EXPERIMENTS ONFIREFLIES

Early hypotheses had difficulties explaining the firefly syn-
chronization phenomenon. For example, Laurent in 1917 dis-
missed what he saw and attributed the phenomenon to the
blinking of his eyelids [11]. Others argued that synchrony
was provoked by a single stimulus received by all fireflies
on the tree [12]. However the presence of a leading firefly or
a single external factor is easily dismissed by the fact that not
all fireflies can see each other and fireflies gather on trees and
progressively synchronize. The lack of a proper explanation
until the 1960s is mostly due to a lack of experimental data.

Among early hypotheses, Richmond [13] stated in 1930
what came very close to the actual process: “Suppose that
in each insect there is an equipment that functions thus: when
the normal time to flash is nearly attained, incident light on
the insect hastens the occurrence of the event. In other words,
if one of the insects is almost ready to flash and sees other
insects flash, then it flashes sooner than otherwise. On the
foregoing hypothesis, it follows that there may be a tendency
for the insects to fall in step and flash synchronously.”

This statement identifies that synchronization among fire-
flies is a self-organized process, and fireflies influence each
other: they emit flashes periodically, and in return are receptive
to the flashes of other males.

To understand this process, a set of experiments was con-
ducted by Bucket al. [14]. These experiments concentrated
on the reaction of a firefly to an external signal depending
on when this light is received. Naturally a firefly emits light
periodically every965 ± 90 ms [14], and the external signal
changes this natural period.

For the experiments, the firefly was put in a dark room
and was restrained from seeing its own flashes. Stimuli were
made by guiding40 ms signals of light from a glow modulator
lamp into the firefly’s eye via a fiber optics. Responses were
recorded and are shown on Fig. 1.

Fig. 1. Experiments by Bucket al. (from [14] with kind permission of
c©Springer Science and Business Media). Delays are expressed in ms.

From Fig. 1, when an external signal is emitted, three
different responses are identified:

• In response A, the artificial signal occurs only20 ms
after the firefly’s spontaneous flash. As the following
response from the firefly occurs at a normal time of
950 ms, the signal does not seem to have modified the
natural response. This corresponds to a refractory period:
during this time, the potential of the flash regains the
“resting” position and no modification of the internal
clock is possible.

• In responses B1 and B2, the signal inhibits the response
of the firefly: instead of emitting light after about960 ms,
it delays its response until920 ms and940 ms after re-
ceiving the signal. Thus successive flashes occur1355 ms
and1635 ms, which is far more than the natural period.

• In response C, the artificial signal occurs150 ms before
the natural flashing, and does not have any incidence
on this flash. This is due to a processing delay in the
central nervous system of a firefly, which is equal to about
800 ms [14]. Therefore the external signal influences the
following flash, which is advanced by150 ms. Thus the
external signal has an excitatory effect on the response
and brings the firefly to flash earlier.

The modified behavior of the firefly depended only on
the instant of arrival of the external signal. The responses
display both inhibitory (responses B1 and B2) and excitatory
(response C) couplings depending on the instant the external
flash is perceived. Furthermore a refractory period placed after
emission is also present (response A).

In all cases, the external flash only altered the emission
of one following flash, and in the following period, nodes
regained their natural period of about one second. Variating
the amplitude of the input signal also yielded similar results.

For more insights into the phenomenon or firefly synchro-
nization, Chapter 10 in [12] provides a history of studies on
fireflies, including early interpretations, and analyzes different
experiments including the one presented in this section.

These experiments have helped mathematicians to model
fireflies. However proving that synchrony occurs when both
inhibitory and excitatory coupling are present has, to our
knowledge, not been done yet. Therefore we will concentrate
on the existing model of [1], which considers exhitatory



coupling and no delays, in order to derive a synchronization
algorithm suited for wireless systems.

III. F IREFLY SYNCHRONIZATION

The internal clock of a firefly, which dictates when a
flash is emitted, is modeled as an oscillator, and the phase
of this oscillator is modified upon reception of an external
flash. In general this type of oscillator is termedrelaxation
oscillators, which are not represented by a typical sinusoidal
form but rather by a series of pulses. There is no general model
describing this class of oscillators, and some examples include
Van der Pol oscillators and integrate-and-fire oscillators [1]. A
review of this class of oscillators and their implications can
be found in Chapter 1 in [15].

In the remainder of this paper, we will focus on integrate-
and-fire oscillators, which are also termed “pulse-coupled
oscillators”. Pulse-coupled oscillators interact through discrete
events each time they complete an oscillation. The interaction
takes the form of a pulse that is perceived by neighboring
oscillators. This model is used to study biological systems
such as heart cells, neurons and earthquakes [5]. This section
describes how time synchronization is achieved in a decentral-
ized fashion in a system ofN oscillators.

A. Mathematical Model

Each oscillatori, 1 ≤ i ≤ N , is described by a state variable
xi, similar to a voltage-like variable in a RC-circuit, and its
evolution and interactions are described by a set of differential
equations [16]:

dxi(t)
dt

= −xi + I0 +
N∑

j=1
j 6=i

Ji,j · Pj(t) (1)

where I0 controls the period of an uncoupled oscillator and
Ji,j determines the coupling strength between oscillators.
When xi = xth, wherexth is the state variable threshold, an
oscillator is said to ‘fire’: at this instant, its state is reset to
zero and it emits a pulse, which modifies the state of other
coupled oscillators. The coupling functionPj is defined as a
train of emitted pulses:

Pj(t) =
∑
m

δ
(
t− τ [m]

j

)
(2)

where τ [m]

j represents themth firing time of oscillatorj and
δ(t) is the Dirac delta function.

As (1) is not solvable in closed-form for arbitraryN , [1]
relies on a discrete approach. To demonstrate that synchrony
is always achieved independently of initial conditions, each
oscillator is described by a phase functionφi which linearly
increments from 0 to a phase thresholdφth and periodically
fires everyT seconds:

dφi(t)
dt

=
φth

T
(3)

When φi(t) = φth, a node resets its phase to0. If not
coupled to any other oscillator, it naturally oscillates and fires
with a period equal toT . Fig. 2(a) plots the evolution of

the phase function during one period when the oscillator is
isolated.
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Fig. 2. Time evolution of the phase function

The phase function encodes the remaining time until the
next firing, which corresponds to an emission of light for a
firefly. The goal of the synchronization algorithm is to align all
internal counters, so that all nodes agree on a common firing
instant. To do so, the phase function needs to be adjusted.

The phase function dictates when a pulse or a flash is
emitted. For a firefly, the natural periodT is equal to about
one second. In order to simplify the analysis, the Mirollo
and Strogatz model does not encompass the clock jitter of
±90 ms that is experimentally observed (Fig. 1). Therefore
in the following, we consider that all nodes have the same
dynamics, i.e. clock jitter is considered negligible.

For considerations about clock jitter and frequency adjust-
ment, a different oscillator model was proposed by Ermentrout
in [17], where oscillators have different frequencies.

B. Synchronization of Pulse-Coupled Oscillators

Mirollo and Strogatz analyzed spontaneous synchronization
phenomena and also derived a theoretical framework based on
pulse-coupled oscillators for the convergence of synchrony [1].

When coupled to others, an oscillator is receptive to the
pulses of its neighbors. Coupling between nodes is considered
instantaneous, and when a nodej (1 ≤ j ≤ N ) fires att = τj ,
i.e. φj(τj) = φth, all nodes adjust their phase as follows:{

φj(τj) = 0
φi(τj) = φi(τj) + ∆φ(φi(τj)) for i 6= j

(4)

Fig. 2(b) plots the time evolution of the phase when receiv-
ing a pulse. To simplify notations, the parameterm in Eq. (2)
is dropped, which is coherent with Fig. 1 where the external
signal affected only one following flashing.

By appropriate selection of∆φ, a system ofN identical
oscillators forming a fully-meshed network is able to syn-
chronize their firing instants within a few periods [1]. The
phase increment∆φ is determined by the Phase Response
Curve (PRC). For their mathematical demonstration, Mirollo
and Strogatz derive that synchronization is obtained whenever
the firing mapxi(t) = f(φi(t)) is concave up and the return
map φi(t) + ∆φ(φi(t)) = g(xi(t) + ε), where ε is the
amplitude increment, is its inverse [1]. The resulting operation



φi(t) + ∆φ(φi(t)) = g(f(φi(t))) yields the PRC, and is a
piecewise linear function:

φi(τj) + ∆φ(φi(τj)) = min (α · φi(τj) + β, 1)

with

{
α = exp(b · ε)
β = exp(b·ε)−1

exp(b)−1

(5)

where b is the dissipation factor. Both factorsα and β
determine the coupling between oscillators, and are identical
for all. The thresholdφth is normalized to 1.

It was shown in [1] that if the network is fully-meshed
as well as α > 1 and β > 0 (b > 0, ε > 0), the
system always converges, i.e. all oscillators will fire as one,
independently of initial conditions. The time to synchrony is
inversely proportional toα.

As it can be observed on Fig. 2(b), detection of a pulse
shortens the current period and causes an oscillator to fire
early, because∆φ(φi(t)) > 0,∀φi(t). Compared to the
experimental data of Fig. 1, the Mirollo and Strogatz model
exhibits only excitatory coupling, and no refractory period is
present.

However the main features of the experiments are present:
nodes do not need to distinguish the source of the synchro-
nization pulse, and adjust their current phase upon reception
of a pulse. The synchronization scheme relies on the instant
of arrival of a pulse and receivers adjusting their phases when
detecting this pulse.

Applied to wireless systems, this has the advantage that
interference and collision is not observed, because a receiver
does not need to identify the source of emission. Furthermore
two pulses emitted simultaneously can superimpose construc-
tively, which helps a faraway receiver synchronize. This type
of spatial averaging has been shown to beneficially bound the
synchronization accuracy to a constant, making the algorithm
scalable with respect to the number of nodes [18].

IV. A PPLICATION TO WIRELESSSYSTEMS

In wireless systems, different delays need to be taken into
account. The algorithm needs to be modified to account
for propagation delays, so that the system remains stable.
Moreover long synchronization wordsneed to be considered
for the synchronization scheme, and a receiver requires some
decoding delay to properly identify that a synchronization
message was transmitted. As these delays affect the achievable
accuracy, we will modify the intrinsic behavior of a node, so
that high accuracy is regained, and evaluate the novel scheme
through simulations.

A. Synchronization through Pulses

Within the field of nonlinear oscillators, it is known that
when a delay occurs, even if it is constant between all nodes,
then a system of pulse-coupled oscillators becomes unstable,
and is never able to synchronize [19]. In wireless systems, even
when considering communication through pulses, a propaga-
tion delay dependent on the distance between nodes occurs.

If considering a propagation delay between two nodesi

and j, denoted byT (i,j)
0 , then the pulse ofi influencesj not

instantly as before, but afterT (i,j)
0 . If this causesj to reach

the threshold and transmit a pulse, theni also increments its
phase afterT (i,j)

0 , which can cause it to fire, and so on. If more
than two nodes are present in the system, nodes continuously
fire.

To avoid this unstable behavior, a refractory period of
durationTrefr is added after firing: after transmitting its pulse,
a nodei stays in a refractory state, whereφi(t) = 0 and
no phase increment is possible, and then goes back into the
listening state where its phase follows (3). This period is also
observed in case A in the experimental data of Fig. 1.

Stability is maintained if echoes are not acknowledged,
which translates to a condition onTrefr:

Trefr > 2 · T [max]

0 (6)

whereT [max]

0 is the maximum propagation delay between two
nodes in the network. With the introduction of the refractory
state, the accuracy of the synchronization scheme is equal or
smaller to the maximum propagation delay.

B. Transmission Delays in Wireless Systems

The previous scheme implies that nodes communicate
through pulses and that a receiver is able to immediately
detect a single pulse of infinitely small width, and no decoding
is done by the receiver. In a wireless environment solitary
pulses are hardly used alone as they are virtually impossible
to detect. More realistically a synchronization word is used.
In the original firefly synchronization scheme, nodes do not
need to distinguish between emitters. Therefore a common
synchronization word is broadcasted by all nodes when firing.

The synchronization word can be chosen from a variety of
schemes: it can correspond to a sequence of pulses, a Pseudo-
Noise (PN) sequence [20] or the 802.11 preamble [21]. In all
these cases, the synchronization word has a certain duration
TTx.

During the transmission of this word, a node is unable to
receive. This constraint is due to limitations on the Radio
Frequency (RF) part of transceivers.

After the message has propagated and been received by node
i, some processing time is required to correctly declare that a
synchronization message has been received. This results in a
decoding delayTdec.

Altogether, four delays need to be taken into account to
model the synchronization strategy to a wireless network:

• T
(i,j)
0 : Propagation delay - time taken for a burst to

propagate from the emitting to the receiving node. This
time is proportional to the distance between two nodes.

• TTx: Transmitting delay - length of the synchronization
word. A node cannot receive during this time.

• Tdec: Decoding delay - time taken by the receiver to prop-
erly identify the emissions of a synchronization word.
This time needs to be overestimated to account for the
slowest receiver.



• Trefr: Refractory delay - time necessary after transmitting
to maintain stability.

In this paper, all propagation delays are considered neg-
ligible in order to focus our analysis on the effects of the
transmission time and the decoding delay on the original
scheme. This assumption is valid when considering Wireless
LAN settings in an ad hoc scenario. Typically the maximum
operation range is50 m, which limits the propagation delay
to T [max]

0 = 50 m
c ≈ 0.17 µs. In comparison, the preamble of

an 802.11 frame, which can be used as the synchronization
word, has a duration ofTTx = 8 µs [21]. Noise at the receiver
and channel gain are also neglected to emphasize the effect of
delays on the original scheme.

For simplicity, transmission and decoding delaysTTx and
Tdec are the same for all nodes. To assume that the decoding
delay is the same for all nodes, slow receivers need to
be accounted for. Therefore, in practice, this delay should
be overestimated, so that all nodes increment their phases
simultaneously upon proper reception of a synchronization
word.

To illustrate the impact of these delays, we choose the
synchronization word to be a PN sequence. When nodej
fires, it enters a transmit state: a synchronization wordx(t)
passes through a shaping filter and starts being emitted. It then
propagates through a channelh(t) before being received by
nodei, which collects the incoming signal through a matched
filter and samples it [20]. Asx(t) is the same for all nodes,
node i detects it by correlating the received signal with the
known message. The output of the correlation detector is given
by [20]:

Λi(t) = x(−t) ∗ yi(t) (7)

whereyi(t) is the incoming signal at nodei and∗ denotes the
convolution operator.

From the system model described previously, Fig. 3 plots
the output of the correlation detectorΛi(t) and the correspond-
ing phase function of nodei during this period.
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Fig. 3. Example of the output of the correlator when considering noise

On Fig. 3 a synchronization sequence of durationTTx =

0.2 · T is transmitted by nodej at t = τj , and is collected by
the receiver. The output of the correlator produces a large peak
that occurs at exactlyθj = τj +TTx [20]. In order to properly
identify this peak, nodei increments its phaseTdec = 0.12 ·T
after the peak, i.e. atθj + Tdec.

These delays are the most significant difference from the
Mirollo and Strogatz model, which assumes no propagation
delay, an infinitely short transmission time and no decoding
delay [1]. The total delay is defined by:

Tdel = TTx + Tdec (8)

When several nodes transmit, if the PN sequence has low
auto-correlation properties such as a Gold sequence [22], then
distinct peaks appear at the output of the correlatorΛi exactly
Tdel after a node has fired [20]. Thus several transmissions
are distinguishable and several phase increments occur. If
nodes fire and transmit synchronously, peaks superimpose
constructively.

The total delayTdel represents the inherent time difference
between the beginning of the transmission of a synchroniza-
tion burst and its successful reception. From the theory of
coupled oscillators, it is known that delays impact heavily on
the synchronization process and its stability [23]. For pulse-
coupled oscillators, it has been shown that the system becomes
unstable in the presence of delays [24], but this model does
not account for the transmission and refractory periods, where
no coupling is possible. In our model, as coupling is only
possible when nodes are in a listening state, stability issues
are prevented by adjustingTrefr, and proper choice forTrefr is
done through simulations.

In any case, due toTdel and to the fact that during transmis-
sion it is not possible to receive, adeafnessof durationTdel

appears in which nodes cannot listen to the network. Within
this deafness, no mutual coupling between nodes can occur,
which implies that the attainable synchronization accuracy is
lower bounded byTdel. For transmission techniques where the
time for one symbol block,TTx, cannot be assimilated as a
pulse, such an accuracy is clearly unacceptable. Therefore,
there is a need to modify the synchronization strategy.

C. Compensating Delays

In order to regain high accuracy, we propose to combat
transmission delays by modifying the intrinsic behavior of
a node: after firing, a nodedelays its transmission of the
synchronization word. This approach is similar to the one
observed in the experiments of fireflies: in response C of
Fig. 1, the advance in flashing is not effective immediately
upon reception of a signal, but occurs in the following period.
The waiting delay is chosen to be:

Twait = T − Tdel = T − (TTx + Tdec) (9)

where T denotes the synchronization period. With this ap-
proach, receivers increment their phases exactlyT seconds
after a transmitter fired.

This scheme modifies the natural oscillatory period of a
node, which is now equal to2 · T . Nodes are coupled only



if they can hear each other duringTRx, which is the time
during which the phase function will linearly increments over
time. This time is reduced by the waiting, transmitting, and
refractory delays, and is now equal to:

TRx = 2 · T − (Twait + TTx + Trefr) = T + Tdec− Trefr (10)

To summarize the modified behavior of a node, Fig. 4 repre-
sents the four successive states of a node:wait , transmit ,
refr and listen when Twait = 0.75 · T , TTx = 0.2 · T ,
Tdec = 0.05 · T , Trefr = 0.2 · T and TRx = 0.85 · T . A
node is represented as a marker that circles around the phase
diagram linearly over time and counterclockwise. Using this
diagram, N nodes can be represented on the same circle,
which helps analyzing the dynamic evolution of the system.
One full rotation of a marker corresponds to a period2 · T .

fire

listen

refr

transmit
wait

t

21
Tdec

Fig. 4. Phase diagram of a system ofN nodes following the novel
synchronization strategy. Two groups of oscillators form, spaced exactlyT
apart.

For a system ofN oscillators, all firings instants are initially
randomly distributed over a period of2 · T , i.e. all markers
are randomly uniformly distributed around the circular state
machine representation. Each oscillator follows the same rules
of waiting before transmitting. When a message is successfully
received duringlisten , the marker representing this node
abruptly shifts its position towards the diametrically opposed
state on the representation of Fig. 4. Over time the oscillators
split into two groups diametrically opposed on the state
machine representation, each group firingT seconds apart and
helping each other to synchronize. ThereforeT is still used as
the reference synchronization period.

The formation of two groups is a necessary requirement for
maintaining high accuracy, because nodes that transmit almost
simultaneously cannot hear each other (deafness while trans-
mitting). Therefore each group helps the other to synchronize
by transmittingT seconds after the other.

With this new transmitting strategy the accuracy of syn-
chronization is no longer limited byTdel. Successful synchro-
nization is therefore declared when firing instants are spread
over a time interval that is equal or smaller than the maximum
propagation delay.

D. Simulation Results

Deriving a thorough mathematical demonstration that syn-
chrony is reached when each node follows the simple rules of
waiting before transmitting is a task of formidable difficulty,
as proving synchrony when no delays are present is already
difficult. The behavior of the system lies within the field of
nonlinear dynamics, and a complete description and analysis
does not seem easily reachable. Therefore we rely on simula-
tion results to evaluate our synchronization scheme.

To verify the validity of the synchronization scheme, Monte
Carlo simulations are carried out. Fig. 5 plots the synchroniza-
tion rate for several values ofTTx, Trefr andα. For simulations,
each periodT is decomposed into 1500 steps, and at each
step, state and interactions of each node are evaluated. The
decoding delay is fixed toTdec = 0.1 · T . Nodes are able to
perfectly distinguish each transmitted synchronization word,
e.g. by using a long Gold sequence as the synchronization
word. The initial conditions correspond to the case where
all nodes have randomly distributed state variable, i.e. each
node is assumed to be active starting with a random phase
φi(0). Successful synchronization is declared if two groups
of oscillators firingT seconds apart form, and the synchrony
rate is defined as the number of successful synchronizations
after50·T over the number of realizations of initial conditions,
which is set to 1000. Initial conditions correspond to the worst
case scenario where initially all state variables are randomly
distributed around the phase diagram of Fig. 4.
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Fig. 5. Synchronization rate whenTTx varies

For Trefr = 0.2 ·T , α = 1.4 (high coupling), and low values
of TTx, the system is unstable and synchrony is not always
reached. In this case, clusters of oscillators form and oscillate
more rapidly (phase-locking mechanism). This phenomenon
tends to disappear when the transmitting time increases, but it
is never completely resolved and the synchrony rate is never
higher than90%.

When increasing the refractory timeTrefr to 0.4·T , synchro-
nization is always obtained for a large range ofTTx. Thus,
a relatively long refractory time is preferable. ForTTx >
0.6 · T , the synchrony rate becomes lower than90% and
drops very rapidly. This can be explained by the proportion
of the listening time, which becomes small compared to the



transmitting time. This makes it difficult for nodes to hear
another and reach a consensus.

Fig. 6 plots the mean time taken by a system of 30
oscillators to synchronize. The duration of a time slotT is
used as reference.
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Fig. 6. Mean time to synchrony whenTTx varies

For Trefr = 0.2 · T , the mean time to synchronȳT is lower
than for Trefr = 0.4 · T . However synchrony rates are lower
and it is preferable to ensure that synchrony will be reached
although it may take one or two periods more in average.

For Trefr = 0.4 · T , T̄ is lower when α = 1.4 than
with α = 1.2. This complies with the original Mirollo and
Strogatz model where the mean time to synchrony is inversely
proportional to the coupling factorα.

V. CONCLUSION

Fireflies provide an amazing spectable with their ability
to synchronize using simple rules: each node maintains an
internal clock dictating when to emit, and in return, this clock
is adjusted when receiving. These synchronization rules are
particularly simple and well suited for a deployment in ad
hoc networks. However they are not directly applicable when
accounting for transmission delays and the fact that a node
cannot receive and transmit simultaneously.

To regain a level of accuracy that is upper bounded by
the propagation delay, the intrinsic behavior of nodes was
modified to compensate for transmission and decoding delay.
Thanks to this modification, communication through pulses is
no longer required, and accurate synchrony of oscillators is
possible. The simplicity and generality of the synchronization
scheme makes its implementation very appealing. If all nodes
cooperate, synchrony can be reached within 15 periods. Once
nodes have agreed on a common time scale, they are then
able to use the full time slot to communicate in a synchronous
manner.

While the rules of the novel synchronization strategy are
simple, the waiting time imposes additional delays, raising
the constraints to achieving convergence and stability. In a
not fully-meshed multi-hop network, however, the situation
is more complicated. Due to the fact that two groups are
established, formations might occur where one node is sur-
rounded by nodes which are all in the same group. This

may result in a “deafness effect”, where a local group of
nodes all transmit at similar time instants, which implies
that these nodes cannot hear each other. While for a fully-
meshed network the probability that all local nodes are within
one group tends to zero, the deafness effect causes severe
problems for meshed networks, and is a suitable topic for
further research.
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