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Abstract—For a system of swarmalators converging to different
types of circular patterns, we provide expressions for the
outer and inner radii of these patterns and examine their
dependence on the model parameters. Derivations are made for
three static patterns with an infinite number of entities and a
generalized swarmalator model with parameterized attraction
and repulsion kernels. Simulations of finite systems show good
agreement with the asymptotic expressions.

Index Terms—Swarmalators, swarming, synchronization,
emergence, self-organizing systems, swarm robotics

1. Introduction

The theory of swarmalators [1] is an exciting approach
for coordination in multi-agent systems. It fuses coordina-
tion in space (swarming) and coordination in time (synchro-
nization) into a unified model. Its special feature is the cou-
pling between spatial and temporal coordination: swarming
influences synchronization and vice versa. This leads to five
types of space-time patterns that emerge depending on the
model parameters (see Fig. 1). Applications can be found
in biology [2], robotics [3], and other disciplines [4], [5].

Swarmalators can be regarded as a self-organized sys-
tem, where interactions between entities lead to the emer-
gence of a global pattern [6]. We address a link between
the model (microscopic level) and the pattern (macroscopic
level) by analyzing the size of the pattern as a function
of some model parameters. The model itself reveals no
information about the pattern size, not even its order of mag-
nitude. If we want to use the model in practice, an equation
or approximation should be helpful in the parameterization.

Section 2 extends the swarmalator model to allow for
parameterized kernels. Section 3 derives expressions for the
outer and inner radii of the three static patterns (Figs. 1a–c)
under the assumption that the number of entities approaches
infinity. Section 4 compares these asymptotic expressions to
simulations with a finite number of entities, showing good
agreement in most cases, and analyzes how the radii depend
on this number. As a byproduct, we gain insight into the
transitions between patterns and reveal two new patterns.

2. System Model

The system consists of N ∈ N entities. An entity i =
1, . . . , N is located at point xi(t) ∈ R2 at time t and has
a phase θi(t) ∈ [−π, π]. The distance between two entities
i and j is dij := ∥xj − xi∥, and their phase difference is
θij := θj − θi. The unit vector is eij :=

1
dij

(xj − xi). The
x and y-components of a vector e are written ex and ey.

The entities influence each other using a swarmalator
model. The original model [1] uses attraction and repulsion
kernels for swarming and synchronization, which we gener-
alize by introducing exponents to these kernels. The system
is then governed by:

ẋi =
1

N

N∑
j ̸=i

eij d
α
ij (1 + J cos θij)− eij d

β
ij

θ̇i =
K

N

N∑
j ̸=i

dγij sin θij (1)

with two coupling parameters J and K, and the introduced
kernel exponents α, β, γ > −2. The equation for ẋi de-
scribes the movement of entity i in the two-dimensional
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Figure 1. Swarmalator patterns for N = 400 entities, parameters α = 0 and β = −1 at time t = 3,000, starting with random positions and equidistant
phases within the interval [−π, π] (as in [1]).
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space including its attraction to and repulsion from other
entities. The parameter J controls the impact of phase
synchrony on swarming, i.e., whether entities with similar
phases attract (J > 0) or repel (J < 0) each other. The
parameter K controls the influence of proximity on synchro-
nization. These parameters determine the pattern type that
results after some time. As shown in Fig. 1, we get: static
sync (J=0.1, K=1), static async (J=0.1, K=−1), static
phase wave (J =1, K =0), splintered phase wave (J =1,
K=−0.1), and active phase wave (J=1, K=−0.75) [1].
Choosing α=0 and β= γ = −1 gives the original model,
and α = 1 and β = γ = −1 yields the linear kernel from
the appendix of [1], which derives some properties of the
patterns. All that follows is for γ = −1.

3. Derivation of Radii

All swarmalator patterns have a circular shape in their
converged state, which can be characterized by an outer and
an inner radius. The outer radius is rout := max1≤i≤N ∥xi−
x̄∥, where x̄ is the mean position of all entities, i.e., the
pattern center. Some patterns have a circular hole in their
center; the radius of this hole is the inner radius rin :=
min1≤i≤N ∥xi − x̄∥. A normalized distance between i and
j is gij := dij/rout; we use a coordinate system with these
normalized distances satisfying maxi ̸=j gij = 2.

In the converged state of the static patterns, the entities
no longer move, so we have ẋi = 0 in (1), which yields:

rαout

N∑
j ̸=i

eij g
α
ij (1 + J cos θij)︸ ︷︷ ︸

Attraction A

= rβout

N∑
j ̸=i

eijg
β
ij︸ ︷︷ ︸

Repulsion R

. (2)

Without loss of generality, the origin of the coordinate
system is positioned in a way that the pattern center is at
x̄ = (x, y) = (1, 0) and a swarmalator is present at the
origin. This entity lies exactly on the perimeter of the pattern
(see Fig. 2a). Based on this, we derive an expression for
the length lO1 as a function of the angle ϕ. Elementary
geometry gives θ = 2ϕ and lO1(ϕ) = sin(2ϕ)

sinϕ . Due to
symmetry, the entity at the origin experiences zero net
attraction and zero net repulsion into the y-direction, i.e.,∑N

j ̸=i eijy g
α
ij = 0 and

∑N
j ̸=i eijy g

β
ij = 0, from which fol-

lows rαout
∑N

j ̸=i eijxg
α
ij (1 + J cos θij) = rβout

∑N
j ̸=i eijxg

β
ij .

Next, we consider the limiting case N → ∞ and rewrite
the sums as integrals using polar coordinates (r, ϕ), hence
substituting eijx = cosϕ and gij = r, which yields

Attraction =

∫ π
2

−π
2

cosϕ

∫ lO1(ϕ)

0

(1 + J cos θij)r
1+α dr dϕ (3)

Repulsion =

∫ π
2

−π
2

cosϕ

∫ lO1(ϕ)

0

r1+β dr dϕ with (4)

rα−β
out =

Repulsion
Attraction

. (5)

Static Sync. In static sync patterns, all phases are equal,
which means that J cos θij = J ∀(i, j). For α = 0 and
β = −1, as in the original model [1], we get

rout =

∫ π
2

−π
2
cosϕ sin(2ϕ)

sinϕ dϕ

(1 + J) 12
∫ π

2

−π
2
cosϕ sin2(2ϕ)

sin2 ϕ
dϕ

=
3π

8(1 + J)
. (6)

For J = 0.1, this results in rout ≈ 1.071. This value is close
to the median value obtained from simulations done with
finite N . For example, we get rout ≈ 1.005 for N = 400.

For a linear attraction kernel with α = 1 and β = −1:

r2out =

∫ π
2

−π
2
cosϕ sin(2ϕ)

sinϕ dϕ

(1 + J) 13
∫ π

2

−π
2
cosϕ sin3(2ϕ)

sin3 ϕ
dϕ

=
1

1 + J
, (7)

yielding rout = (1 + J)−
1
2 , which corresponds to [1, (46)].

Static Async. For a small environment around a swarmalator
at a position xi, there are infinitely many swarmalators each
at a position xj for which the distance is smaller than ∥xi−
xj∥ < ρ that have uniformly distributed phases. Thus, we
get cos θij =

∫ 2π

0
cos θ dθ = 0. Equation (5) yields:

rα−β
out =

∫ π
2

−π
2
cosϕ

∫ lO1(ϕ)

0
r1+β dr dϕ∫ π

2

−π
2
cosϕ

∫ lO1(ϕ)

0
r1+α dr dϕ

. (8)

For α = 0 and β = −1, we get

rout =

∫ π
2

−π
2
cosϕ sin(2ϕ)

sinϕ dϕ

1
2

∫ π
2

−π
2
cosϕ sin2(2ϕ)

sin2 ϕ
dϕ

=
3π

8
≈ 1.178 (9)

This result is close to the median value of simulations, where
we have rout ≈ 1.106 for N = 400.

A linear attraction kernel α = 1 and β = −1 gives

r2out =

∫ π
2

−π
2
cosϕ sin(2ϕ)

sinϕ dϕ

1
3

∫ π
2

−π
2
cosϕ sin3(2ϕ)

sin3 ϕ
dϕ

= 1 , (10)

which is the same as [1, (40)].

Static Phase Wave. The static phase wave pattern has an
inner and an outer radius. Let rr be the relative inner radius
if the outer radius is normalized to 1. We define lO2 as the
distance between the origin and the furthest part of the inner
circle on a line with angle ϕ as in Fig. 2b. This yields

lO2(ϕ) = rr
sin
(
ϕ+ arcsin sinϕ

rr

)
sinϕ

(11)

for ∥ϕ∥ ≤ arcsin rr. We set lO2 = 0 for |ϕ| > arcsin rr,
since the line is not intersecting with the inner circle. Next,
we define lO3 as the distance between the origin and the
closest point where the inner circle crosses the line with
angle ϕ, as shown in Fig. 2c:

lO3(ϕ) = rr
sin
(
ϕ− arcsin sinϕ

rr
+ π

)
sinϕ

(12)
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Figure 2. Derivation of lO1(ϕ), lO2(ϕ), lO3(ϕ), and θO .
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Figure 3. Derivation of lI1(ϕ), lI2(ϕ), and θI .

for ∥ϕ∥ ≤ arcsin rr, or lO3 = 0 for other values of
ϕ. Furthermore, we calculate the phase θO as a function
of the angle ϕ and the distance r from the origin as is
shown in Fig. 2d, which leads to θO = arctan sinϕ

1
r−cosϕ

.
For cosϕ > 1

r , we need to further adjust the formula by
subtracting π sign

(
arctan sinϕ

1
r−cosϕ

)
.

This results in

RO =

∫ π
2

−π
2

cosϕ

(∫ lO3(ϕ)

0

r1+β dr +

∫ lO1(ϕ)

lO2(ϕ)

r1+β dr

)
dϕ,

(13)

AO =

∫ π
2

−π
2

cosϕ

(∫ lO3(ϕ)

0

(1 + J cos(θO))r
1+α dr

+

∫ lO1(ϕ)

lO2(ϕ)

(1 + J cos(θO))r
1+α dr

)
dϕ. (14)

Since there are two unknown variables rout and rr, we
need an additional equation to calculate numerical solutions.
Thus, we shift the origin of the coordinate system by rr to
the right such that the inner circle passes through the origin.

We define lI1(ϕ) to be the length from the new origin
to the perimeter of the swarm, as in Fig. 3a, which is

lI1(ϕ) =
sin (ϕ+ arcsin (rr sinϕ))

sinϕ
. (15)

Next, we calculate the length lI2(ϕ) from the origin to the
inner circle along a line with angle ϕ as shown in Fig. 3b:

lI2(ϕ) = rr
sin (2ϕ)

sinϕ
(16)

for ∥ϕ∥ ≤ π
2 and lI2 = 0 for ϕ not in this range. Finally, we

calculate the phase θI as a function of the angle ϕ and the
distance r as in Fig. 3c, resulting in θI = arctan sinϕ

rr
r −cosϕ

.

For cosϕ > rr
r , we need to further adjust the equation

by subtracting π sign(arctan sinϕ
rr
r −cosϕ

). This gives

RI =

∫ π

−π

cosϕ

∫ lI1(ϕ)

lI2(ϕ)

r1+β dr dϕ, (17)

AI =

∫ π

−π

cosϕ

∫ lI1(ϕ)

lI2(ϕ)

(1 + J cos(θI))r
1+αdr dϕ . (18)

We can solve for rr and in turn calculate rout. For all values
of β > −2, (17) evaluates to

RI =

∫ π

−π

cosϕ

∫ lI1(ϕ)

lI2(ϕ)

r1+β dr dϕ = 0. (19)

Since rout and rr are both strictly positive, it follows

AI =

∫ π

−π

cosϕ

∫ lI1(ϕ)

lI2(ϕ)

(1 + J cos(θI))r
1+α dr dϕ = 0. (20)

Solving this equation numerically for α = 0, β = −1, and
J = 1 gives rr ≈ 0.5439. Using (5) and the value calculated
for rr we get rout ≈ 1.4076. These numbers are close to the
median value of the simulations that are r̂o ≈ 1.3721 for
N = 400. Numerically solving the equation for α = 1,
β = −1, and J = 1 leads to rr ≈ 0.366. Using (5) and the
value calculated for rr we get rout ≈ 1.25593. Again, these
numbers are close to results in [1, (60)–(62)], where for a
J = 1 we get rout ≈ 1.26645.

We use a similar approach for rin. Here, we do not
use relative coordinates but assume that rout is known. The
coordinate system is shifted such that the inner circle with
radius rin crosses the origin. This placement is similar to
the one shown in Fig. 3 with the difference that the outer
radius not is not necessarily 1.



Similar to the derivations shown before, we calculate
the distances lR1(ϕ) and lR2(ϕ) from the origin to the outer
circle and to the inner circle, respectively, yielding

lR1(ϕ) = rout
sin
(
ϕ+ arcsin( rin

rout
sinϕ)

)
sinϕ

(21)

lR2(ϕ) = rin
sin (2ϕ)

sinϕ
(22)

for ∥ϕ∥ > π
2 , lR2(ϕ) = 0. For the phase θR, we get θR =

arctan sinϕ
rin
r −cosϕ

.
For cosϕ > rin

r , we need to adjust the equation by
subtracting π sign(arctan sinϕ

rin
r −cosϕ

).
We solve for rin. Similar to (20), the repulsion vanishes:

RR =

∫ π

−π

cosϕ

∫ lR1(ϕ)

lR2(ϕ)

r1+β dr dϕ = 0 . (23)

Therefore, we can solve for rin based on

AR =

∫ π

−π

cosϕ

∫ lR1(ϕ)

lR2(ϕ)

(1 + J cos θR)r
1+α dr dϕ = 0 .

(24)
Solving the equation numerically using α = 0, β = −1,

and J = 1 yields rin ≈ 0.7655, which is about the median
value from simulations, which is rin ≈ 0.7995 for N = 400.
For α = 1, β = −1, and J = 1 we get rin ≈ 0.4597 which
is close to rin ≈ 0.4768 given in [1, (60)–(62)].

4. Numerical Evaluation

We now study how the pattern radii depend on α, β,
and J . Our expressions for the asymptotic case are compared
to simulations with a finite number of N entities. If not
mentioned otherwise, we simulate N = 400 swarmalators.
Each simulation run starts by placing the entities on a
square grid of size 2 × 2. For the static phase wave, the
phases are initialized with equidistantly distributed values
θi = 2π(i− 1)/N −π, which leads to a regular pattern.
For the other patterns, the phases are assigned randomly
from a uniform distribution on [−π, π]. Simulations use
Euler’s method [7], which is a discrete time step approach
for numerically solving differential equations of first order.
In each step t, the values of the derivatives ẋ and θ̇ are
calculated, and then applied to update the current state by
x(t+1) = x(t)+ ẋ(t)∆t and θ(t+1) = θ(t)+ θ̇(t)∆t with
step size ∆t. Simulations are performed with ∆t = 0.1 for
3,000 time units (30,000 steps), and all plotted data points
are averaged over 30 simulation runs. We keep α, β > −2
as otherwise no stable pattern can form, and β < 0 to ensure
repulsion acts locally and degrades for increasing distance.

4.1. Impact of Model Parameters

Static Sync. Fig. 4a shows the radius of the static sync
pattern over J for α = 0 and 1. The analytical results (line)
always yield a slightly larger radius than the simulations
(marks). This is because the radius increases with N in this
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Figure 4. Static sync: Outer radius rout with parameter K = 1. Lines are
analytical results (N → ∞); marks are simulation results (N = 400).

pattern (see later in Fig. 9a), hence the assumption N → ∞
leads to a larger radius than N = 400. In all cases, the
radius decreases with increasing J and approaches zero in
the limit J → ∞. The limit β → α− yields rout = 0 for
J > 0 and α > −2.

Fig. 4b shows the radius over α for fixed J . Again, the
equations always give a larger radius than the simulation.
The patterns are less stable for some combinations of α
and β (e.g., α = 0, β = −1.5). Here, ∆t must be reduced
to reliably converge to the static sync pattern. An increase
of β typically leads to a smaller radius, since higher β
implies weaker repulsion. The dependence on α is not as
straightforward: For α < 0, the radius increases with α, as
a higher α leads to a weaker attraction. For α > 0, the
radius is almost independent of α for β ≥ −1, but it even
decreases with α for β = −1.5 (where far-away entities with
a distance above 1 are important for pattern formation).

Static Async. As shown in Fig. 5a, the choice of J in the
static async pattern has no impact on the radius. However, if
J is above a certain threshold, there is a soft transition to the
active phase wave. If a value close to the threshold is chosen,
the patterns are neither clearly static async nor active phase
wave. Instead, new patterns emerge like presented in Fig. 6.
Since the active phase wave forms a hole in the center, the
outer radius rout increases. This threshold depends on α. For
α = 1, it corresponds to the threshold given in [1, Fig. 1].

The impact of α (and β) on the radius is shown in
Fig. 5b. There is a clear trend: For increasing α, the radius
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clustered static async for α = 2 and β = −1.5. N = 400 and t = 3000

decreases. Here, the phase difference θij plays an important
role: Similar phases that lead to stronger attraction tend to
be at a larger distance. Since high α increases the range
of attraction, the overall attraction increases. The radius
increases with less negative β since repulsion decreases.

Static Phase Wave. Results for the static phase wave are
shown in Figs. 7 and 8. Both inner and outer radius increase
with J for the given parameters (Figs. a). Again, simulations
yield slightly smaller radii than the asymptotic equations.
Results from [1, (60)–(62)] have an exact match for the
outer radius and a good fit for the inner one with some slight
deviations for J close to 1. Both radii diverge to infinity for
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Figure 7. Static phase wave: Outer radius rout with parameter K = 0. Lines
are analytical results (N → ∞); marks are simulation results (N = 400).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

J

In
ne

r
ra

di
us

r i
n

α = 1

α = 1 from [1]
α = 0

(a) Inner radius rin over J with β = −1.

0 1 2 3 4 5
0

0.5

1

1.5

2

α

In
ne

r
ra

di
us

r i
n

β = −1.5

β = −1

β = −0.5

(b) Inner radius rin over α with J = 1.

Figure 8. Static phase wave: Inner radius rin with parameter K = 0. Lines
are analytical results (N → ∞); marks are simulation results (N = 400).



J → 2−; no stable pattern can be formed for J ≥ 2.
Next, we plot the radii for different α and β (Figs. b).

Both radii decrease with increasing α. Higher β-values tend
to give a smaller outer radius but show no clear trend for
the inner one. Moreover, for smaller values of α and β ̸=
−1, the radius tends to deviate from the calculation more
and more, as these patterns tend to be more unstable and
converge to malformed shapes. For the inner radius, the data
matches well if β = −1, but the order of traces is inverted
for different β: the equation gives a smaller inner radius
for β = −0.5, but a larger inner radius for β = −1.5 as
compared to simulations. Further investigation is needed to
obtain a deeper understanding of this phenomenon.

4.2. Impact of Number of Entities

Finally, we study the pattern radii as a function of N
for α = 0 and β = −1. For all patterns, the phases are
assigned randomly using a uniform distribution. Simulations
are performed 30 times and the median is taken. The results
in Fig. 9 indicate that there is a strong impact of N on
the radii for N < 100, whereas the results become less
variant for higher N . However, even at around N = 400
the radii still change, which contributes to the difference
to asymptotic results. For static sync and async, there is a
trend toward larger outer radii for increasing N ; in the static
phase wave, the trend is inverted.
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Figure 9. Simulation results of the median radii of static phase wave,
splintered phase wave, and active phase wave with α = 0 and β = −1.

5. Conclusions and Outlook

We derived and analyzed the size of static swarmalator
patterns with parameterized kernels in the asymptotic case of
infinitely many entities and compared the results to simula-
tions with a finite number of entities. This generalizes known
results with a linear attraction kernel (α = 1, β = −1) [1].

A priori knowledge of the pattern size could help to
apply swarmalators in practice and parameterize them for
specific applications. For example, swarms of robots can
now form patterns of desired size in a self-organized way
without the need to program the movement paths. This is
useful if robots must arrange around a point of interest to
perform joint sensing. The results might also be applicable
to natural systems in which combinations of synchronization
and swarming occur [8]. Open issues include the analysis of
non-static and three-dimensional patterns as well as stability
with respect to the kernel exponents.
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