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Abstract—The spatial distribution of nodes in wireless net-
works has important impact on network performance properties,
such as capacity and connectivity. Although random sample
models based on a uniform distribution are widely used in the
research community, they are inappropriate for scenarios with
clustered, inhomogeneous node distribution.

This paper proposes a well-defined measure for the level of
inhomogeneity of a node distribution. It is based on the local
deviation of the actual value of the density of nodes from its
expected value. Desired properties of the measure are defined
and mathematically proven to be fulfilled. The inhomogeneity
measure is also compared to human perception of inhomogeneity
gained via an online survey. The results reveal that the measure
well fits human perception, although there are notable deviations
if linear operations are applied.

Index Terms—Wireless networks, simulation, modeling, inho-
mogeneous spatial distribution, inhomogeneity measure.

I. INTRODUCTION AND MOTIVATION

Simulation-based analysis of wireless networks requires a
set of modeling assumptions describing the behavior of the
system and its environment. For system-level analysis, some
of the important issues include channel models, speech and
data traffic models, and mobility models. Much research has
been devoted to these building blocks, and many models
exist for different scenarios and technologies (see, e.g. [1]–
[5]). Another modeling class, however, has received much
less attention in the wireless research community so far: the
spatial distribution of the devices. It states how many nodes
are located per unit area for each location of the system area,
thus having significant impact on various network properties,
such as connectivity, capacity, and medium access behavior.

A frequently used method to distribute devices is to take
random samples from a two-dimensional uniform distribution.
Such an approach is, however, unrealistic in many scenarios.
It is especially inappropriate for sparsely-connected, delay-
tolerant networks [6] and wireless community networks [7],
as these networks typically consist of clustered node distribu-
tions. The current research of the authors is thus devoted to
the development of well-described and well-analyzed models
for non-uniform (inhomogeneous) spatial node distributions.
The overall goal is to enable fellow researchers to easily use
inhomogeneous distributions with known stochastic properties
in their simulations.

A possible way to use inhomogeneous node distributions
is to collect location data in the real world (see, e.g. [8],
[9]) and apply these data in simulations. Such actual location
of nodes is, however, difficult to obtain accurately without
additional infrastructure or GPS receivers. Therefore, many

data gathering projects do not collect the location data itself
but derive related data, such as number of neighbors in range.
Even if real node distributions are available, the obtained
simulation results are restricted to the investigated environment
(e.g. a university campus) and are not of generic applicability.

An alternative way to use inhomogeneous node distributions
is to apply a synthetic, random model designed to generate
distributions that show similar properties to the real envi-
ronment. The advantage of such an approach— compared to
real-world samples — is that we can generate many different
spatial distributions to simulate on. Steps in this direction were
made in [10], [11], and in the authors’ paper [12]. The latter
presented an algorithm to create a random inhomogeneous
node distribution based on a neighborhood-dependent thinning
of a homogeneous Poisson process. Nodes are initially placed
uniformly, but then all nodes having less than k neighbors
in a given range r are deleted. The inhomogeneity of the
distribution can be tailored by the two parameters k and r. The
resulting distribution has well-defined stochastic properties
(e.g. with respect to the nearest neighbor distance). These
properties are also analyzed in [12]. The selection of the
parameters k and r is, however, left to the user and depends
on his or her subjective perception of inhomogeneity.

In this paper, we go one step further: we define an objective
measure for the degree of inhomogeneity of a node distribution.
The basic questions are: How can we quantify the inhomo-
geneity of a node distribution? Which properties should such
a measure have? Our contribution is three-fold: First, we are
not aware of any well-defined measure for inhomogeneity of
node distributions in mobile communications. As the presented
measure is independent of previous work, it gives a generic
measure to characterize a node distribution. Second, the mea-
sure is useful for creating node distributions as described in
[12]. A researcher is no longer forced to set the parameters k
and r, but just defines the degree of inhomogeneity, which will
then be translated into appropriate values of k and r. Third,
such a measure is of practical use if real-world location data
has been collected. We can measure the inhomogeneity of the
real-world distribution and then synthetically generate random
node distributions with a similar level of inhomogeneity.

This paper is organized as follows: In Section II we define
required properties for an inhomogeneity measure. Section III
describes our approach and proves that it satisfies the given
properties. A comparison with the human perception of in-
homogeneity is presented in Section IV. Section V gives an
overview of related work. Finally, Section VI concludes and
gives an outlook on further research in this field.
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II. INHOMOGENEITY MEASURE REQUIREMENTS

Before defining an inhomogeneity measure, let us first dis-
cuss the following basic questions: What are general require-
ments on such a measure? What are important aspects when
defining a measure for spatial distributions? We list a number
of properties that an inhomogeneity measure should fulfill.
Some of these properties are necessary to get a reasonable
measure, others are introduced for a simple use of the measure.

An inhomogeneity measure should fulfill the following
three properties: First, the measure is in the range between
“0” and “1”, with “0” indicating a perfectly uniform, and
“1” indicating an extremely non-uniform distribution. This
property is mainly for an easy usage of the measure. Second,
the measure is independent of the number of nodes 1 and the
size of the area in which the nodes are distributed. Third,
the measure is independent of linear operations (e.g. moving,
scaling, mirroring, rotating), as such transformations do not
have any influence on the degree of inhomogeneity of a
distribution. Furthermore, the measure supports wrap-around
distance metrics to avoid border effects (see, e.g. [12]).

III. A GRID-BASED INHOMOGENEITY MEASURE

A. Definitions

Given is a rectangular area A with side lengths a and b. An
s-segmentation of the area A is a subdivision of both edges
of A into s parts of same length. In other words, the area is
subdivided into a grid with s2 rectangular subareas of same
size. These subareas are called Ai with i = 1, 2, . . . , s2. The
number of nodes located in a subarea A i is called mi.

An offset (x, y) ∈ [0, a
s ) × [0, b

s) of an s-segmentation is
defined as follows. In the horizontal direction, the entire grid
is moved to the right by x; the parts of the segmentation that
leave A at the right border are assumed to be inserted at the
left border of A. The value y plays the same role for the
vertical direction. The upper bounds for x and y are due to
symmetry. For a particular offset (x, y), the number of nodes
in a subarea Ai is called mi,(x,y). An s′-segmentation is called
a refinement of an s-segmentation if and only if s ′ > s.

B. Derivation of the Inhomogeneity Measure

If we distribute n nodes uniformly randomly on the area A,
the expected number of nodes in each subarea A i is

m̄(s) := m̄i(s) =
n

s2
∀i. (1)

The deviation of the actual number of nodes m i in an area
Ai from this expected value m̄ is an indicator for the local
inhomogeneity of the spatial distribution. Hence, we define the
inhomogeneity of an s-segmentation with offset (x, y) as

h(x,y)(s) :=
1
2n

s2∑
i=1

|mi,(x,y) − m̄(s)| , (2)

with the normalization factor 1
2n (see Property 2 below).

1More nodes should not result in higher inhomogeneity values. As no
reference measure for inhomogeneity exists it is impossible to create different
distributions with various numbers of nodes but the same inhomogeneity to
verify this property.

(a) Centered Cluster (b) Moved Cluster

Fig. 1. Different Inhomogeneity Values for a Moved Cluster.

As illustrated in Figure 1, the value of h(x,y)(s) depends
on the offset. Fig. 1(a) depicts a node cluster that is centered;
Fig. 1(b) shows the same cluster moved to the upper left
corner. Both figures contain a 2-segmentation of the area. If
the cluster is centered, all four subareas contain approximately
the same number of nodes. This would give you the impression
that there is a homogeneous distribution. This effect must be
avoided, as a good inhomogeneity measure is independent of
linear operations of the entire set of nodes. This can be done
by choosing an offset that maximizes the inhomogeneity value
for a given s-segmentation (as in Fig. 1(b)). Thus, we define
the inhomogeneity of an s-segmentation as

h(s) := max
(x,y)

h(x,y)(s). (3)

The inhomogeneity h(s) can be interpreted as a measure
with an adjustable locality. If the s-segmentation is being
refined, more local deviations to an idealized homogeneous
distribution are taken into account. At some point when the
segmentation is sufficiently refined, even for a homogeneous
distribution, the value is increasing due to local variations. For
inhomogeneous distributions these deviations can be “seen”
by this measure with a much less refined segmentation,
e.g. if all nodes are in the upper left quarter of A, even
a 2-segmentation indicates complete inhomogeneity. Thus,
high values of h(s) for rough s-segmentations indicate an
inhomogeneous distribution, whereas small values indicate a
homogeneous distribution. For more refined s-segmentations
the difference between these two situations is decreasing. At a
certain point (e.g. if there is no subarea containing more than
one node) there is no difference between a homogeneous and
an inhomogeneous distribution.

We reach our final goal: the definition of an inhomo-
geneity measure that is independent of the area segmenta-
tion. For this purpose, we generate area segmentations with
s = 2, 4, 8, . . . , 2r (r ∈ N) until we have reached a certain
segmentation in which each subarea contains at most one node.
For each segmentation, we compute h(s) and build a weighted
sum in which a more refined segmentation (s high) gets a
lower weight. The inhomogeneity h of a node distribution is
thus defined as

h :=
r∑

j=1

w1−j h(2j)

=
1
2n

r∑
j=1

w1−j max
(x,y)

22j∑
i=1

∣∣∣mi,(x,y) − n

22j

∣∣∣ . (4)



The constant w is selected in a way to achieve h ≤ 1 (see
Section III-D2: w ≈ 4.79129). The upper bound r in the sum
is chosen in a way that each subarea in a 2r-segmentation
contains at most one node. If two or more nodes have exactly
the same position, the sum goes to infinity. This infinite sum
converges for all w > 1.

C. Basic Properties of h(s)

In the following we prove some basic properties of the
inhomogeneity measure h(s).

Property 1: The inhomogeneity h(x,y)(s) never decreases
for a refinement of the segmentation, i.e.,

h(x,y)(s′) ≥ h(x,y)(s) ∀ s dividing s′ . (5)

Proof: If s divides s′ there exists a set of subareas A′
j

with j = 1, . . . , t of the s′-segmentation for each Ai being a
subarea of the s-segmentation such that

⋃t
j=1 A′

j = Ai. Let
m′

j,(x,y) be the number of nodes located in A ′
j . For a given

Ai we get |mi,(x,y)− m̄(s)| = | ∑t
j=1 m′

j,(x,y)− t · m̄(s′)| ≤∑t
j=1 |m′

j,(x,y) − m̄(s′)| due to the triangle inequality.

Property 2: Consider a distribution of n nodes. If we refine
a segmentation to infinitely small subareas, the inhomogeneity
h(s) converges to 1, i.e., lims→∞ h(s) = 1.

Proof: There exists an s′ such that in no subarea of
the corresponding s′-segmentation two nodes with different
positions are located. In other words, if there are two or more
nodes in the same subarea, they have exactly the same position.
Let mi with i = 0, . . . , n denote the number of subareas
containing i nodes. Then we have

h(s′) =
1
2n

(
n∑

i=1

mi

∣∣∣ n

s2
− i
∣∣∣+ m0

∣∣∣ n

s2
− 0
∣∣∣
)

.

We use the fact that m0 = s2−∑n
i=1 mi, let s′ → ∞, and get

lim
s′→∞

h(s′) =
1
2n

(
n∑

i=0

| − mi · i|︸ ︷︷ ︸
=n

+ n

)
= 1.

This property shows that the inhomogeneity h(s) converges
to a fixed value for a sufficient segmentation of the area. This
convergence holds independently of the distribution. The speed
of convergence depends, however, on the distribution. The
inhomogeneity h, which is independent of the segmentation,
is higher for inhomogeneous distributions. This is due to the
larger weights of the first summands.

D. Minimum and Maximum of h

In this section, we investigate which distributions minimize
and maximize the inhomogeneity measure h. This insight is
important to interpret a given inhomogeneity value. Obviously
h(s) ≥ 0 holds for all distributions and all s-segmentations.

1) Minimum Value: The inhomogeneity measure should be
small for node distributions in which the nodes are “equally
scattered” over the entire area. Let us consider the extreme
case, namely a grid distribution: A spatial distribution of n
nodes is called a grid distribution if each subarea of the

√
n-

segmentation contains exactly one node. (We require
√

n ∈
N.). In the following we show that a grid distribution yields a
minimum inhomogeneity.

Property 3: A grid distribution of 2i nodes, i even, yields
an inhomogeneity h = 0.

Proof: We examine a 2j-segmentation of the area A for
j = 1, 2, . . . , i

2 . Since each subarea of the 2
i
2 -segmentation

contains exactly one node and m̄(2
i
2 ) = 1, h(2

i
2 ) = 0. For the

2
i
2−1-segmentation each subarea therefore contains 4 nodes

and the expected number of nodes per subarea is 4. Thus we
have again h(2

i
2−1) = 0. If we apply this idea to all j =

i
2 − 2, . . . , 1 we get h(2j) = 0 for all j = 1, 2, . . . , i

2 .
2) Maximum Value and Normalization: The inhomogeneity

value should be large for node distributions in which the nodes
are densely located in one subarea, and the remaining subareas
are empty. In the extreme case, all nodes are located at the
same position.

Property 4: If all nodes are located at the same position,
the inhomogeneity h reaches its maximum.

Proof: The sum reaches its maximum if and only if all
summands do so. Therefore, we find the maximum of h(2 j)
for j = 1, · · · , r. This value is maximal if all n nodes are
located in one common subarea. Since this assumption must
hold for arbitrary fine segmentations, the distribution giving
the maximum h has all n nodes at the same location.

Now we compute the maximum value of h. If all n nodes
are located in a single subarea, we obtain from (1) and (2) the
inhomogeneity

h(s) =
1
2n

[ ∣∣∣n − n

s2

∣∣∣+ (s2 − 1)
∣∣∣ 0 − n

s2

∣∣∣ ] = 1 − 1
s2

. (6)

Substituting (6) with s = 2j into (4) yields

h =
∞∑

j=1

w1−j

(
1 − 1

22j

)
. (7)

Since the two series
∑∞

j=1 w1−j and
∑∞

j=1
w1−j

22j converge,
we may compute their limits separately and get

h =
∞∑

j=1

w1−j −
∞∑

j=1

w1−j

22j

=
w

w − 1
− w

4w − 1

=
3w2

(w − 1)(4w − 1)
. (8)

To achieve normalized values for h, we select the weight w
such that we get

0 ≤ h ≤ 1 . (9)

Thus, we set (8) equal to 1 and obtain

w =
5 +

√
21

2
≈ 4.79129 . (10)

Note that there is a second solution for w that cannot be used
as the sum in (7) would diverge.



(a) h = 0.04 (b) h = 0.15 (c) h = 0.24 (d) h = 0.25 (e) h = 0.28 (f) h = 0.35

(g) h = 0.35 (h) h = 0.54 (i) h = 0.58 (j) h = 0.63 (k) h = 0.91 (l) h = 0.99

Fig. 2. Inhomogeneity Values for Different Distributions.

E. Visualization

Figure 2 depicts different distributions and their correspond-
ing inhomogeneity values h. Distribution 2(a) represents a grid
distribution yielding a very low value of h = 0.04. A random
uniform distribution 2(b) also gets a low inhomogeneity value
of h = 0.15. By removing some nodes from a uniform
distribution as in distributions 2(c)–2(g) some holes appear,
and the inhomogeneity value increases. With even more com-
pacted node clouds as in distributions 2(h)–2(k) the value
of the inhomogeneity becomes even higher. Finally, with a
very dense distribution 2(l) the inhomogeneity value h = 0.99
almost reaches its theoretic maximum of h = 1.

IV. COMPARISON WITH HUMAN PERCEPTION OF

INHOMOGENEITY

We are now interested in the question as to whether the
measure h is in line with a human’s intuition regarding the
level of inhomogeneity in a distribution. In other words: If
we compare two spatial distributions, do the measure h and
a human user make the same choice in selecting the more
inhomogeneous distribution?

To investigate this issue, we conducted an online sur-
vey (mobile.uni-klu.ac.at/uniform/), asking re-
searchers and students in Austria and South Korea to compare
a set of 100 tuples of distributions with respect to their
inhomogeneity. The system presents two pseudo-random dis-
tributions and asks the user to select the distribution which
he or she finds more uniform, or to choose “similar” if she
or he cannot decide. For both distributions the corresponding
inhomogeneity measures are h1 and h2 are also calculated.
The computer bases its “uniformity decision” on these values.
At the end of each survey, the choices of the computer and
the user are compared.

A. General Results

The results of a survey with 79 users are as follows. A
fraction of 70 % of the tuples are answered “correctly,” i.e.,
the users classify the distributions in the same manner as

the computer. In 18 % of the tuples the users cannot decide
although the distributions are different. In the remaining 12 %,
the users’ classification differs from that of the computer
(“incorrect”).

TABLE I
ANSWERS IN THE ONLINE SURVEY

Class 0.10 0.20 0.30 0.40 0.50 0.60 0.70
Correct 42% 69% 90% 94% 95% 94% 93%
Undecided 34% 23% 7% 3% 2% 2% 5%
Incorrect 24% 8% 3% 3% 3% 4% 2%

Table I lists a classification of all answers. The horizontal
classes refer to the absolute difference hΔ = |h1 − h2|. The
numbers represent the percentage of correct, undecided, and
incorrect answers in each class. Of all tuples with hΔ < 0.1
approximately 42 % are answered correctly, 34 % are unde-
cided; 24 % are answered incorrectly. On one hand, this shows
that for hΔ < 0.1 the uniformity decision is difficult. On the
other hand, for hΔ > 0.1, the computer’s objective decision
well matches the human’s subjective perception. In fact, 72 %
(77 %) of all incorrect (undecided) answers are given to tuples
with hΔ < 0.1. In conclusion, the inhomogeneity measure h
fits well the human perception of inhomogeneity.

B. Perception of Linear Operations

Another goal of the survey is to determine how human
perception can cope with wrap-around distance and linear
operations applied to distributions. For this purpose, two dis-
tributions that are identical but with linear operations applied
are presented to the user several times between other random
distributions.

An example is given in Figure 3. All figures depict the
same distribution with h = 0.42 but with different linear
operations applied. Considering the first, left-most distribution
as the original, the second one is moved by half the side length
horizontally, the third one is transposed, and the fourth one
is moved in such a way that the node with the most dense
neighborhood is in the center. These distributions may look
different to a human but the distribution is in fact the same.



(a) Original (b) Moved (c) Transposed (d) Centered

Fig. 3. Effect of Linear Operations on Human Perception.

TABLE II
EFFECT OF LINEAR OPERATIONS IN ONLINE SURVEY.

Linear Operation Similar Answers (%)
Similar 94%
Exchanged 91%
Mirrored 84%
Moved 81%
Transposed 83%
Centered 80%

Table II lists the percentage of similarly answered tuples
after the linear operation was applied. Results show that
presenting the same distributions again and exchanging the left
and right image does have some impact on the users’ decision
which can be explained by inattentive users. Applying linear
operations, however, results in more distinct differences.

V. RELATED WORK

Classical approaches in statistics use multiple hypothesis
testing against a given distribution — e.g. the uniform dis-
tribution — to derive statements about the homogeneity of a
distribution (see, e.g. [13]; [14]). Such hypothesis tests are,
e.g. the chi-squared test and the Kolmogorov-Smirnov test.
Since the output of a test can only be “yes” or “no,” it does
not provide any measure of the inhomogeneity in the sense of
a real value between zero and one. The p-value of the test is
also inadequate for such purposes.

Johansson describes how kurtosis can be used to measure
the homogeneity of any property on a given area [15]. This ap-
proach is, however, not applicable to our scenario as it assumes
some knowledge of the given distribution (e.g. the probability
density function), which we do in general not know.

Spatial inhomogeneity measures are also needed and used
in chemistry and physics. An overview of an aspect of work
in that area is given in [16]. For example, Zwicky [17] uses
an approach similar to (2). The measure does, however, not
consider the offset and is thus variant to linear operations.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have presented an inhomogeneity measure
that can be used to objectively rate the inhomogeneity of a
spatial node distribution on a bounded area. Using this measure
and our inhomogeneous spatial node distribution generation
method from an earlier paper, an arbitrary number of similar
inhomogeneous distributions for simulations can be generated.
We have defined desired properties of an inhomogeneity
measure and presented our approach along with proofs that
it fulfills those properties. The analysis of an online survey
showed that in most cases the objective measure corresponds

to human perception. However, it also revealed issues with the
human perception of inhomogeneity when linear operations
are applied to the distributions.

Our inhomogeneity measure will also prove useful to as-
sess mobility models. Basically, a mobility model should
not change the basic type of node distribution, i.e. a sparse
clustered network should not turn into a uniform distribution
after a few steps. The random waypoint mobility model, for
example, was shown to turn a uniform distribution into a dis-
tribution with high density in the center of the simulation area
and zero density at the borders [4]. Using the inhomogeneity
measure we are currently working on a mobility model that
maintains the inhomogeneity of the initial distribution.
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