
A Classifier for Aerial Users in 5G Networks
Florian Posch1, Aymen Fakhreddine1,2, Enrique Caballero1, and Christian Bettstetter1
1Institute of Networked and Embedded Systems, University of Klagenfurt, Klagenfurt, Austria

2Technology Innovation Institute, Abu Dhabi, United Arab Emirates
E-mails: flposch@edu.aau.at, {aymen.fakhreddine, enrique.caballero, christian.bettstetter}@aau.at

Abstract—We propose a radio-based approach for height
classification of mobile devices in cellular networks for the
purpose of enabling the network infrastructure to distinguish
between ground users and aerial devices like drones. The
classifier is based on learning the properties of the reference
signal received power (RSRP) values that each device obtains
from base stations. Scenario-based simulations using the Vienna
5G System Level Simulator with adopted base station antenna
patterns demonstrate the feasibility of decision tree classifiers
with an average misclassification rate at about one percent with
three height levels. It is shown that decision trees outperform
other classification algorithms in this context.

Index Terms—5G, UAV, decision trees, drones, cellular net-
works, system-level simulation, height classification

I. INTRODUCTION

The integration of aerial devices like drones into terrestrial
cellular networks like 5G for data transfer and command
and control poses several challenges, including handovers [1]
and interference [2]–[4]. To tackle these issues, it would
be beneficial to have an automatic classification system that
distinguishes devices as either “ground” or “aerial” [2]. Such
a height classifier would enable the radio access network
to decide whether to apply regular techniques (for ground
devices) or aerial-specific techniques (for aerial devices)
in functions like handover, resource allocation, and cell
association.

This work proposes and analyzes a height classifier that
operates solely on power traces in user equipment (UE) based
on the reference signal received power (RSRP) from base
stations (BSs). Different well-known classification algorithms
are evaluated by simulation of a real-world campus scenario
to choose and tune the best-performing one, namely decision
trees. The entire approach does not rely on positioning
systems, such as GPS or Galileo, and does not require
additional hardware like pressure sensors. We have in mind
flying devices like drones and air taxis at their typical flight
height; however, the approach is also applicable to identify
normal cell phones in high-rise buildings or airplanes during
takeoff or landing.

The paper is structured as follows: Section II motivates the
need to classify UEs by height and puts forward arguments
for employing cellular radio signals instead of alternative
technologies like sensors. Section III reviews the literature.
Section IV presents the system model and simulation frame-
work. Section V introduces the classifier. Section VI illus-
trates and analyzes the classifier performance. Section VII
draws conclusions and proposes research directions.

II. MOTIVATION

A. Why classify aerial users?

Today’s predominant users of cellular networks are ground
users — resting, walking, going in trains, or driving in ve-
hicles. All cellular networks are optimized for these ground
users. For example, the antennas of BSs are tilted downwards
[5]. Due to this tilt, aerial UEs like drones primarily use
the sidelobes, which entail different link properties. Another
difference between ground and aerial UEs is that ground
UEs hardly cause inter-cell interference (as their signal is
blocked by objects like buildings). Aerial UEs have line-of-
sight (LOS) links to BSs even further away, thus causing
inter-cell interference [3], [4].

The first step to tackle the integration of aerial devices is
that the network needs to know whether a device is a normal
ground device or an aerial device. Even the most efficient
algorithms will not fix any issue as long as the network does
not know when to apply them. Along these lines, developing
a technique that enables the radio access network to classify
UEs according to their height gains substantial importance.

B. Why use cellular radio signals for classifiers?

The primary motivation behind using cellular radio-based
classifiers is to avoid additional hardware like pressure
sensors or ultrawideband (UWB) transceivers and give the
network full control of the classification process without the
need for inputs from other technologies like global navigation
satellite systems (GNSS). If we rely on the UE itself to report
its height provided by a different technology, the network
has no means to verify this information but rather blindly
trust it and use it for network resource optimization, which
makes the network vulnerable to malicious usages or attacks.
This could include falsely reported information, or aerial
users could claim that they are ground users to potentially
avoid paying higher fees for the network resources should
a mobile operator decide to impose higher fees for aerial
users. A network provider could also collaborate with the
unmanned traffic management (UTM) competent authorities
to coordinate authorized vehicles, following the recommen-
dations by the 3GPP requirements for remote identification of
the Unmanned Aerial System (UAS), summarized in 3GPP
22.125 and 23.755 [6]. These documents clearly state that
“the location information from the UAV cannot be fully
trusted” [7] and that “the 3GPP system shall enable a UAS
to update a UTM with the live location information of
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a UAV and its UAV controller” [8] especially if height
information is used to enforce no-fly zones or match the flight
with the appropriate subscription information to the network.
Moreover, our approach being solely based on basic radio
hardware of the UE to perform height classification makes
it feasible to be implemented on commercial off-the-shelf
devices.

III. RELATED WORK

The 3GPP TS 36.331 Release 15 introduces a height-
reporting parameter to allow the UE to communicate its
height to the cellular network [9]. This would enable the net-
work to first distinguish between ground UEs and aerial ones,
and by consequence gives the possibility to implement novel
features that consider the unique aspects and requirements of
aerial UEs facilitating their integration in cellular networks.
It is therefore crucial in current and future generations of
mobile networks for UEs to be able to determine their
height levels so that the network can differentiate aerial UEs
from UEs on the ground, and serve each category or class
optimally given the service requirements of each of these
categories.

Location estimation in cellular networks is a well-
established topic, however, the focus is typically on two-
dimensional location estimation, whereas height estimation
and classification has seen less interest. This includes relative
positioning of the UE with respect to the BS to which it
is associated [10] and multilateration techniques [11]. These
techniques are beneficial for example for emergency services
to localize the caller but not to classify their height. For 5G
networks and beyond, current research explores the use of
mm-wave and narrow beam technologies to perform accurate
positioning [12]. If the accuracy in altitude is reliable enough,
not only the 2D location estimation, this could be used to
classify aerial UEs.

The paper [13] proposes a set of features including
RSSI (Received Signal Strength Indicator), SINR (Signal-to-
Interference-and-Noise Ratio), and the number of reported
cells for learning-based drone detection. This is different to
our approach that considers RSRP values collected by the UE
from both the serving and the neighboring cells. Furthermore,
we propose to classify the aerial users themselves between
those flying at mid heights and others flying at high heights.

Other localization technologies offering sufficient accuracy
and reliability can be used to classify whether an UE is aerial
or on the ground. This includes those described in [12] or
using a barometer/GPS. But this is not the aim of the paper
at hand, which aims at proposing a classification approach
of UEs without any external hardware or additional inputs
from other sensors while keeping the computational effort
reasonable.

IV. SYSTEM MODEL AND SIMULATOR

A. Simulator
All simulations are performed using the Vienna 5G System

Level Simulator, which is part of the Vienna Cellular Com-

munications Simulators (VCCS) developed by TU Wien [14].
The tool is programmed in MATLAB in an object-oriented
way and can be customized to our needs for aerial devices.
The classification algorithms are run using the Statistics and
Machine Learning Toolbox of MATLAB.

B. System model

The simulation was set up in a 1 km2 area located around
the University of Klagenfurt, Austria. Within this area, build-
ings are generated with random heights between 10 and 25 m
on the footprints gathered with OpenStreetMap. Inside the
area, 400 UEs are set per simulation. Half of these UE
are ground UEs (0 − 30m) and half of them aerial UEs;
the aerial UE are again separated half-half into low-aerial
(30 − 100m) and high-aerial (100 − 250m). All users are
randomly distributed inside the area, ground users were just
placed outside buildings. The BS locations are taken from
Senderkataster.at [15], which provides real-world positions.
Antennas are set to a height of 30 m above ground; antennas
mounted on buildings are handled in the same way as those
on masts.

Fig. 1: Snapshot of the simulated area with buildings, base
stations, ground devices, and aerial devices

C. Antennas

A three-sector antenna is used for the BSs. It is modified
in a way to simulate a main lobe with two side lobes using
the expressions taken from 3GPP [16] and summarized as
follows:

• Vertical cut of the radiation power pattern (dB):
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• Horizontal cut of the radiation power pattern (dB):
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• Maximum directional gain of an antenna element
GE,max = 8 dBi

The sidelobes use the same expressions with some
changes:

• θ3dB and ϕ3dB are multiplied by a factor to be able to
decrease the size relative to the main lobe.

• θ and ϕ are subtracted by an angle, which moves the
direction of the beam relative to the main lobe.

• A′′
dB is subtracted by a sidelobe level, which decreases

the strength relative to the main lobe.
The main lobe has an elevation of 20 degrees, and θ3dB

and ϕ3dB are set to 25 degrees. The maximum attenuation
is set to −90 dB to accomplish a “shadow” behind the base
stations. The two sidelobes are located above the main lobe
with an elevation of −35 and −70 degrees relative to the
main lobe. The 3 dB angles are decreased by a factor of 0.5
and 0.3 and the level is reduced by 5 and 7 dB, respectively.
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Fig. 2: Antenna pattern shown in the x/z-plane. Colors define
antenna gain in decibels.

With the standard settings (maximum attenuation of 20 dB
and 3 dB angle of 65 degrees), the hard drops in RSRP
that occurred in real-world experiments [1] did not appear.
Moreover with the maximum attenuation set to 20 dB, a UE
directly behind an antenna still received a very strong signal.
This was fixed by increasing it to 90 dB, which at least pushes
the antennas facing away from the UE below the −120 dBm
threshold. These settings are used to obtain similar RSRP
values as in the real-world measurement campaign [1] carried
out in the same area on our campus.

V. CLASSIFIER

A. Height groups

The UEs are classified into three groups according to their
height (see Table I). The first threshold is fixed to 30 m,
which is a typical height of BSs. The second threshold is set
to 100 m, which is below the typical flight height of consumer

TABLE I: Height Classification

Height Classification
< 30 m Ground / terrestrial

30 – 100 m Low aerial
> 100 m High aerial

drones and well below the maximum allowed flight height
for drones in the category “open” defined by European Union
Aviation Safety Agency (EASA) at 120 m [17].

B. Power of signals received from base stations

The classifier is based on the RSRP values that each UE
obtains from its serving BS and other BSs. These values are
provided by the simulator. The minimum receiver sensitivity
is set to −120 dBm, a typical value for mobile devices; RSRP
values below this threshold are set to −1000 dBm.

Figure 3 shows the number of antennas “visible” for each
UE, where the horizonal axis sorts all UEs by their height.
The red vertical lines show the classification thresholds at
30 m and 100 m; the green vertical lines show the minimum
and maximum heights of building.
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Fig. 3: Number of visible antennas per user per height

To prepare the data for the classification, the result of
multiple simulations (see Section IV) was collected. The
simulation data further was reduced to just contain the RSRP
each user receives from each antenna (including these from
cells further away), and the discretized height level de-
scribed earlier. These pairs of RSRP values and height level
are further referred to as data points. Finally, all data
points which include less than three RSRP values above
−120 dBm, which means less than three possible antennas,
were also deleted.

C. Classification algorithms

The focus in this paper is to test the feasibility and
performance of existing, off-the-shelf algorithms for the task
of UE classification. We test four classification algorithms
implemented in MATLAB on RSRP data:

• Decision trees
• K-nearest neighbors (K-NN)
• Support vector machine (SVM)
• Neural networks



VI. RESULTS AND ANALYSIS

The classification algorithms are now tested in multiple
scenarios with different movement patterns of aerial devices.
Table II gives an overview of these scenarios. Before the
initial test, 58,000 data points were simulated and postpro-
cessed, accounting for 58,000 random position simulations.

TABLE II: Overview of simulations and results

Test Name Fig. Description
Snapshot 4 Impact of training data amount on accuracy for

different classification algorithms
Vertical take-
off

5a Accuracy during takeoff and landing of a UAV

Straight flight
at 40 m

5b Accuracy during a flight on a specific height

Straight flight
at 80 m

5c Accuracy during a flight on a specific height

Impact of
training data

6 More detailed look on the decision tree clas-
sifier regarding the amount of training data
offered

A. Initial tests - Snapshot

We do initial tests to gain first insights on the influence
of the training data size and the choice of algorithm on the
classification accuracy. Each algorithm is tested ten times
with independent training and testing data, randomly taken
from the 58,000. Figure 4 shows the misclassification rates
(1 − Accuracy) based on a training set of 1,000 data points
(Figure 4a) and 50,000 points (Figure 4b). The testing set is
5,000 data points in both cases; we did not evaluate the in-
fluence of the testing set size. These tests show how accurate
classifiers are at a particular point in time. The results indicate
a significant advantage of decision trees and K-NN compared
to SVMs and neural networks. Especially the decision tree
outperforms other algorithms for both training sizes, having
a misclassification rate of 4% and 1%, respectively.

The following tests study the accuracy for moving UE. We
now focus on decision trees and K-NN.

B. Flight classification - Vertical takeoff

The first flight classification test is on a drone flying
straight up and down, i.e., changing only its height (z-
coordinate). This test should demonstrate the accuracy of
height classification without any impacts due to positioning
in 2D. The first plot in Figure 5 shows the classification
results over time. The decision tree yields an accuracy of
97% and the K-NN an accuracy of 89%. The results show
that misclassifications occur mainly for heights close to
the thresholds. A low-pass filter is a possible solution to
overcome this issue.

C. Flight classification - Straight flight

The following tests are made with a more advanced
movement pattern: a drone lifts off at position A, flies a direct
path, and lands at position B. This could be a delivery drone,
which starts at a store, flies straight to the customer, and
lands to deliver its payload. The test should demonstrate the
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Fig. 4: Accuracy of classification algorithms. Comparison of
two sizes of training data.

classification accuracy during the flight itself. Two variants
are tested: (i) flights at a height of 40 m, which is above
the buildings and the base stations but only 10 m above the
threshold to terrestrial devices and (ii) flights at 80 m, which
is already close to the threshold for high-aerial devices.

The results are given in Figure 5. The decision tree
performs well with an accuracy of 98% at both heights; the
K-NN gives 77% for 40 m and 94% for 80 m. At 40 m, the
K-NN struggles during the entire flight, whereas the decision
tree classifier struggles only when crossing the thresholds. It
is on top of the initial test that points out a more significant
difference between the two algorithms. At 80 m, the K-NN
algorithm does not struggle so much, but it still gives a worse
accuracy than the tree. It was also tested at higher altitudes.
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(b) Straight flight at 40 m
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Fig. 5: Predicted height using KNN and decision trees.

On 200 m K-NN gives 95% and decision tree has an accuracy
of 98%.

D. Decision tree - Impact of training data size

The final test should show how the size of training data
improves the tree classifier. For each size, 10 tests are carried
out, each with a random sample of training and testing data.

Figure 6 shows the misclassification rate for six different
sizes of training data from 1,000 to 50,000 data points. As
expected, the accuracy improves with increasing set size.
The largest training set yields a level where 99% of all
classification decisions are correct. On the lower end, even
an unusually small training set of a thousand data points give
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Fig. 6: Predicted Height using Decision Tree Classification

a relatively low misclassification rate of about 5 %. Clearly,
the large training set requires a higher computational effort,
but this is not on the side of the UE since the UE itself only
uses the already fitted model and the RSRP values it stores.

VII. CONCLUSIONS AND FURTHER WORK

The received signal strength can be exploited with classi-
fication algorithms to categorize cellular devices according
to their height. This is useful to identify flying objects
like drones in order to treat them with special network
management. Simulations indicate that decision trees have
a low misclassification rate for this task, in the order of one
or two percent in our setup, with low computational effort
in the mobile device. For comparison, GPS has an error
margin of about ±15m with a 95 % confidence interval. The
proposed approach offers standalone usability, independent
of positioning systems or additional hardware. It can also be
employed in conjunction with positioning systems, like to
cross-validate GPS data.

We plan to test the classifier with experimental RSRP
values from real-world tests. Apart from validating the sim-
ulation results, this would provide insights on the feasibility
of using a model trained with simulated data in a real-world
scenario. Furthermore, we will investigate to what extent the
model that was learned in a certain geographical area can be
transferred to another area. This would provide guidelines on
whether training is required for each location or is enough to
generate a model for each type of city or region of interest.
Finally, we will increase the number of height levels, thus
moving from height classification to height estimation.
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