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Abstract—Flooding is an elementary tool for information
dissemination in a wide range of network scenarios, such as link
state advertisements in wireless multi-hop networks and query
propagation in peer-to-peer networks. Using random graph mod-
els, we compare two competing flooding techniques: multipoint
relays and network coding. Our analytical results show that in
the case of network coding, the number of transmissions per
source message is asymptotically independent of the number of
nodes. Simulation results yield further insights on the impact of
topology on the performance of each flooding technique, more
specifically on the required number of transmissions and the
resulting end-to-end delay.

Index Terms—flooding, network coding, multipoint relays,
wireless ad-hoc networks, peer-to-peer networks.

I. INTRODUCTION

Flooding a network with messages intended for a large
number of nodes is arguably the simplest form of information
dissemination in communication networks, in particular if
knowledge about the network topology is limited or even
absent. Typical applications, in which each node forwards
copies of messages to all of its neighbors, include the spread-
ing of link state advertisements for topology control and the
distribution of queries for resource location purposes (e.g. in
peer-to-peer systems).

When nodes communicate over the wireless medium, the
broadcast property of the channel enables us to optimize the
flooding process with respect to the number of transmissions,
with obvious repercussions on the overall energy expendi-
ture and bandwidth consumption. Since the basic problem
of finding the minimum energy transmission scheme for
broadcasting a set of messages in a given network is known
to be NP-complete [1], flooding optimization often relies
on approximation algorithms. For example, in [2] and [3]
messages are forwarded according to a set of predefined
probabilistic rules, whereas [4] and [5] advocate deterministic
algorithms. Reference [6] proposes a deterministic algorithm,
which approximates the connected dominating set within a
two-hop neighborhood of each node, thus forming a backbone
of forwarding nodes and limiting the number of transmissions.
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The idea of using such a sub-set of nodes, also called multi-
point relays (MPR), has been implemented successfully in the
Optimized Link State Routing (OLSR) protocol [7] for mobile
ad-hoc networks.

Recent research suggests that further reductions in the num-
ber of transmissions required for flooding could be achieved
using network coding (NC), i.e. the ability of intermediate
nodes to mix multiple messages through algebraic operations.
More specifically, Reference [8] quantifies these gains for
ring and square lattice topologies, and presents a heuristic
algorithm which outperforms probabilistic routing for a class
of random geometric graphs. Related work on the benefits
of network coding includes a proof that the minimum energy
single-source multicast problem with network coding becomes
solvable in polynomial-time [9] and in a distributed man-
ner [10]. The problem of multiple multicasts, which is closer
to flooding, remains however an open problem [11].

Seeking to understand whether network coded flooding
can indeed compete against an established technique such as
multipoint relaying, we compare their respective performance
with respect to the number of transmissions and the end-to-
end delay. More specifically, we base our analysis on Erdős
Rényi Random Graphs and Random Geometric Graphs and
shed some light on the impact of the network topology on the
behavior of two main representatives: the NC flooding scheme
of [8] and the MPR flooding scheme of [7].

We present the following main contributions:

(a) an analytical characterization of the transmission cost of
network coded flooding;

(b) a set of simulation results for the number of transmissions
and delay trade-offs between network coding and MPR
flooding;

(c) a discussion on the impact of the network topology on
the behavior of network coding;

(d) a comparison of the complexity of all algorithms under
consideration.

The paper is organized as follows. Section II recalls some
basic definitions of graph theory and presents the algorithms
under study. Section III gives an asymptotic analysis of the
NC flooding algorithm. Section IV presents a simulation study
followed by a brief analysis of the message complexity.
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II. DEFINITIONS AND FLOODING ALGORITHMS

A. Definitions from Graph Theory

Let G = (V,E) be a graph with a set of nodes V and
a set of edges E. The number of nodes in G is denoted by
n = |V |. The degree d(u) of a node u is the number of edges
adjacent to u, i.e., the number of neighbors of u. The distance
between two nodes is the number of edges in a shortest path
connecting them. A node with distance z ∈ Z

+ to a node u
is called z-hop neighbor of u. The diameter of a graph is the
greatest distance between any two nodes.

An Erdős Rényi Random Graph (ERG) is a graph
G = (V, p), with a set of nodes V and a set of edges, such
that there exists an edge between any pair of distinct nodes
with probability p.

A Random Geometric Graph (RGG) is a random graph
G(V, r0) in which the edge existence probability p between
two nodes u, v ∈ V is determined by their geometric distance
such that p = 1 for ‖u − v‖ ≤ r0 and p = 0 otherwise. The
parameter r0 is the range of a node.

B. Multipoint Relaying

Multipoint relaying ([6], [12]) is a technique to reduce the
number of redundant re-transmissions while broadcasting a
message in the network. The key idea is that each node selects
a subset of its neighbors (“multipoint relays”) that ensure
connectivity to every two-hop neighbor. The use of MPRs
for control traffic transmission results in a scoped flooding,
thus inducing a reduction of the number of transmissions. The
problem of finding the optimal MPR set is an NP-complete
problem, but efficient heuristics are proposed for its calculation
[13]. In this paper we resort to the heuristic described in
Algorithm 1 for the MPR set computation, and Algorithm 2 for
MPR-based flooding. Asymptotic analysis of these two MPR
algorithms can be found in [12].

Algorithm 1 MPRSelection [6]

Let N(u) denote the set of one-hop neighbors of u, and N2(u)
denote the set of two-hop neighbors of u.

1) Start with an empty multipoint relay set MPR(u).
2) Select those one-hop neighbor nodes in N(u) as multipoint

relays which are the only neighbor of some node in N2(u),
and add these one-hop neighbor nodes to the multipoint relay
set MPR(u).

3) While there still exist some nodes in N2(u) which are not
covered by the multipoint relay set MPR(u):

a) For each node in N(u) not in MPR(u) compute the
number of nodes that it covers among the uncovered
nodes in the set N2(u).

b) Add that node of N(u) in MPR(u) for which this number
is maximum.

Algorithm 2 MPRFlood [12]
1) A source node u broadcasts its source message mu.
2) Each node v that receives mu re-broadcasts it only if:

a) v is a multipoint relay of the previous hop of the message,
and

b) the message was not previously forwarded by v.

C. Random Linear Network Coding

Random linear network coding can be viewed as a dis-
tributed method for combining different data flows ([14], [15]).
The basic principle is that each node in the network selects
independently and randomly a set of coefficients and uses
them to form linear combinations of the messages it receives.
These linear combinations are then sent over the outgoing
links. The global encoding vector, i.e. the matrix of coefficients
corresponding to the operations performed on the messages, is
sent along in the packet header to ensure that the end receivers
are capable of decoding the original data. Specifically, it was
shown that if the coefficients are chosen at random from a
large enough field, Gaussian elimination succeeds with high
probability [14].

The key idea for efficient flooding provided in [8] is the use
of random linear network coding combined with a probabilistic
forwarding algorithm. The proposed algorithm (Algorithm 3),
resorts to a heuristic that assigns to each node a dynamic
forwarding factor dependent on the topology. A node that
receives a linearly independent combination of messages will
form and broadcast new random linear combinations of the
current and previously received messages depending on this
forwarding factor.

Algorithm 3 NCFWB [8]
1) Associate with each node v a forwarding factor f(v).
2) Node v transmits its source message max{1, �f(v)�} times,

and an additional time with probability p = f(v) −
max{1, �f(v)�} if p > 0.

3) When a node v receives linearly independent messages, it
broadcasts a linear combination over the span of the received
coding vectors �f(v)� times, and an additional time with
probability p = f(v) − �f(v)�.

The forwarding factor f(v) of a node v is set to be inversely
proportional to the degree d(v), i.e., f(v) = k

d(v) , where
k ≥ 0 is a scaling factor whose optimum value depends on
the topology [8].

III. ASYMPTOTIC ANALYSIS OF NETWORK CODED

FLOODING

A. Problem Statement

Let G = (V,E) be a connected graph and furthermore let
M = {mu : u ∈ V } be a set of messages. Assume that every
node u ∈ V acts as a source node intending to deliver a source
message mu to every other node. In the NC flooding process,
one transmission of a node refers to broadcasting a message
or a linear combination of messages to all neighbors of the
node.

We are interested in the number TNC of required transmis-
sions per source message, such that all nodes can decode all
messages mu ∈ M . Our goal is to characterize the expected
value E(TNC) in ERGs and RGGs.

B. General Bounds

Let D be a random variable representing the degree of
an arbitrary node in G. Furthermore, let ED(g(D)) denote



the expected value of some function g(D) of the random
variable D, and let ξD = ED(D−1) be the first negative
moment of D.

Theorem 1: For a transmission scheme defined by Algo-
rithm 3, with k chosen to ensure that all nodes can decode all
messages, the expected value ED(TNC) is bounded as follows:

(n−1) k ξD+1 ≤ ED(TNC) ≤ (n−1) k ξD+max(1, k). (1)

For k ≤ 1 the bounds are tight.

Proof: Let St be the total number of transmissions
performed by all source nodes for the transmission of their
source messages, and It be the total number of transmissions
performed by intermediate nodes due to reception of linearly
independent combination of messages. As there are n source
messages, the expected number of transmissions for a source
message is

ED(TNC) =
ED(St) + ED(It)

n
. (2)

To determine St we define S as the random variable rep-
resenting the number of transmissions performed by a source
node to broadcast its source message. Since G has n sources,

ED(S) =
1
n

ED(St). (3)

According to step 2 of Algorithm 3:

S|D =




1, for D ≥ k (4a)⌊
k

D

⌋
+ S′, for D < k (4b)

where S′ is a Bernoulli random variable representing
the outcome of a potential additional transmission, with
P(S′ = 1) = B = k

D − ⌊ k
D

⌋
. The conditioned expected

value of S′ is

ED(S′|D < k) = ED(B|D < k)

= ED

(
k

D
−
⌊

k

D

⌋ ∣∣∣D < k

)
. (5)

The conditioned expected value of S given D < k is

ED(S|D < k) =

= ED

(⌊
k

D

⌋ ∣∣∣D < k

)
+ ED (S′|D < k)

= ED

(⌊
k

D

⌋ ∣∣∣D < k

)

+ ED

(
k

D

∣∣∣D < k

)
− ED

(⌊
k

D

⌋ ∣∣∣D < k

)

= ED

(
k

D

∣∣∣D < k

)
≤ k, (6)

because D ≥ 1.
Conjugating (6) with the fact that S ≥ 1, we get:

1 ≤ ED(S) ≤ max(1, k). (7)

With (3), we obtain

n ≤ ED(St) ≤ n max(1, k). (8)

To determine It we define I as the random variable rep-
resenting the number of transmissions performed by an inter-
mediate node due to the reception of a linearly independent
combination of messages. According to step 3 of Algorithm 3:

I =
⌊

k

D

⌋
+ I ′, (9)

where I ′ is a Bernoulli random variable representing
the outcome of a potential additional transmission, with
P(I ′ = 1) = B = k

D − ⌊ k
D

⌋
. The expected value of I ′ is:

ED(I ′) = ED(B) = ED

(
k

D

)
− ED

(⌊
k

D

⌋)
. (10)

The expected value of I is:

ED(I) = ED

(⌊
k

D

⌋)
+ ED(I ′)

= ED

(
k

D

)
= k ED

(
1
D

)
= k ξD. (11)

Since after the completion of the transmission process of all
n messages, the rank increase of the decoding matrix of each
node is n − 1 and since G has n nodes, we have

ED(It) = n (n − 1) ED(I)
= n (n − 1) k ξD. (12)

Finally, from (2), (8) and (12), we get (1).

C. Bounds for Erdős Rényi Random Graphs

Corollary 1: Let G = (V, p) be a connected ERG,
ε1 = O

(
1

(n−1) p

)
, and ε2 = (1 − p)n−1. For a transmission

scheme defined by Algorithm 3, with k chosen to ensure that
all nodes can decode all messages, we have

k

p
+ 1 ≤ ED(TNC) ≤ k

p

1 + ε1
1 − ε2

+ max(1, k). (13)

Proof: ERGs have a Binomial degree distribution
B(n − 1, p). As we consider connected graphs, however, we
must use a conditioned degree distribution. We know that each
node has at least one neighbor, i.e., d(u) > 0 ∀u ∈ V . For this
reason, we assume a positive Binomial distribution, which can
be obtained by normalizing the Binomial distribution with the
factor 1 − P(D = 0). This yields

P(D = d) =
1

1 − qn−1

(
n − 1

d

)
pd qn−1−d, (14)

with q = 1 − p and d ∈ Z
+.

The first negative moment of the degree is thus:

ξD = ED

(
1
D

)
=

n−1∑
d=1

1
d

P(D = d)

=
1

1 − qn−1

n−1∑
d=1

1
d

(
n − 1

d

)
pd qn−1−d. (15)

This function can be developed into the following series [16]:

ξD =
1

1 − qn−1

r−1∑
i=0

i! qi

pi+1 (n − 1)[i+1]
+ o

(
1

(n − 1)[r]

)
,



for any r ∈ Z
+, with s[j] = s!

(s−j)! . Moreover, it can be
rewritten as:

ξD =
1

1 − qn−1

(
1

(n − 1) p
+ O

(
1

((n − 1) p)2

))
. (16)

Hence, we can compute

(n − 1) ξD =

=
n − 1

1 − qn−1

(
1

(n − 1) p
+ O

(
1

((n − 1) p)2

))

=
1

p (1 − qn−1)

(
1 + O

(
1

(n − 1) p

))

=
1
p

1 + ε1
1 − ε2

(17)

≥ 1
p

(18)

with ε1 = O
(

1
(n−1) p

)
and ε2 = qn−1 = (1 − p)n−1.

Replacing (17) and (18) in (1), we get (13).

Fig. 1 plots the analytical and simulation results in ERGs,
showing that the simulated average value of TNC lies within
the analytical bounds of ED(TNC) with ε1 = ε2 = 0.
Section IV-B explains the used simulation method.

D. Bounds for Random Geometric Graphs

Corollary 2: Let G = (V, r0) be a connected RGG
in a square with toroidal distance metric ([17]) and area
A � π r2

0 , and let β = π r2
0

A , and ε1 = O
(

1
(n−1) β

)
,

and ε2 = (1 − β)n−1 For a transmission scheme defined by
Algorithm 3, with k chosen to ensure that all nodes can decode
all messages,

k

β
+ 1 ≤ ED(TNC) ≤ k

β

1 + ε1
1 − ε2

+ max(1, k). (19)

Proof: RGGs have a Binomial degree distribution
B(n − 1,

πr2
0

A ) [18]. Similar to Section III-C, we derive:

(n − 1) ξD =
1
β

1 + ε1
1 − ε2

(20)

≥ 1
β

(21)

with β = π r2
0

A , and ε1 = O
(

1
(n−1) β

)
, and ε2 = (1 − β)n−1.

Replacing (20) and (21) in (1), the above result follows.

Corollaries 1 and 2 show that in ERGs and RGGs, the
expected number of transmissions required to flood a message
is asymptotically independent of the number of nodes n. It
depends on other topological parameters and on the scaling
factor k of Algorithm 3 which, according to the authors of
[8], is independent of n.

IV. ENERGY, DELAY, AND COMPLEXITY TRADE-OFFS

In this section we present a simulation study comparing NC
and MPR flooding on ERGs and RGGs. An analysis of the
message complexity is included at the end of this section.
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Fig. 1. Number of Transmissions per Message using Network Coded Flooding
in Erdős Rényi Random Graphs with 50 nodes

A. Performance Metrics

Aiming at a reasonable comparison of NC and MPR, we
consider the following metrics:

• Number of transmissions per source message TNC and
TMPR: defined in Section III-A;

• Delay: rounds elapsed between the transmission of a
message by a source node and the reception (with MPR),
or successful decoding (with NC) at a node;

• Delivery ratio (DR): ratio between number of sent mes-
sages and the number of messages successively received
or decoded at a node;

B. Description of the Simulator

A network simulator written in C++ was developed for
this study. Its main features are: (1) support of random linear
NC; (2) NC and MPR flooding and probabilistic routing; (3)
generation of ERGs and RGGs and analysis of its properties
and (4) visualization of the network operation.

For the implementation of random linear NC, we followed
the framework described in [15] with coding operations over
the F28 finite field. This field size is sufficient for practical
networking scenarios ([15], [8]) and has the advantage of
allowing each field symbol to be stored in one byte. Decoding
uses Gaussian-Jordan elimination allowing progressive decod-
ing while coded messages are being received.

The MAC layer works in an idealized manner with perfect
collision avoidance. The simulation time is divided in discrete
rounds (time units), and each transmission/reception lasts one
simulation round. In each round, the order of the node trans-
missions is randomly chosen, and each idle node is scheduled
to transmit if and only if all its neighbors are idle (not in a
receiving or transmitting state).

Each data point (mean, 10% and 90% quantile) in the sim-
ulation results is obtained from 100 repetitions of a simulation
using different seeds for the random number generator.

C. Analysis of Erdős Rényi Random Graphs

In this set of simulations we compare MPR and NC flooding
in ERGs with the edge probability p ∈ [0.2, 1] and n = 50
nodes. For a fair comparison, Algorithm 3 is simulated with
scaling factors k ∈ {0.5, 1.0, 2.0, 4.0}, chosen via simulation
on an iterative trial-and-error approach to guarantee the exis-
tence of (k, p) tuples that achieve 100% DR.
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Fig. 2. Analysis in Erdős Rényi Random Graphs
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Fig. 3. Analysis in Random Geometric Graphs (no torus)
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Fig. 4. Analysis in Random Geometric Graphs (torus)

Fig. 2(a) shows that MPR flooding always guarantees
100% DR. NC requires sufficiently large k for the same DR.
Note that k decreases with increasing p, and for p = 1 (fully
connected graph) k should be 0, since one transmission from
a source reaches all other nodes (see Algorithm 3).

The “delay gain” obtained by NC is substantial for small p
and sufficiently large k (Fig. 2(b)). As p → 1, the NC delay
converges to the delay value of MPR (with k = 0, not shown
in the graph).

In Fig. 2(c), we observe that NC flooding (with sufficiently
large k and small p) outperforms MPR flooding in terms of
number of transmissions. The fraction TNC/TMPR ranges
from 0.6 (k = 4) to 1 (k = 0, not shown in the graph) when
p increases from 0.2 to 1. This is an expected result, since
with p converging to 1 the diameter of the graph reduces to
1 and consequently both NC and MPR schemes are able to
broadcast a message with only one transmission.

D. Analysis of Random Geometric Graphs

In this set of simulations we compare both flooding algo-
rithms in RGGs in a square area of size A, n = 50 nodes

and the radio range r0. We set r0√
A

∈ [0.4, 1], to ensure with
high probability that all graph realizations are connected [17].
The parametrization of the simulation results as a function
of r0√

A
enables the generalization of the results to different

parameters.

Fig. 3(a) presents the DR with different values of the
scaling factor k. Fig. 3(b) illustrates that NC, with sufficiently
large k (which can be inferred from Fig. 3(a)), presents a
substantial “delay gain” (half the delay of MPR for r0√

A
= 0.4).

This advantage vanishes as the network diameter converges
to 1 (r0/

√
A → 1). From Fig. 3(c) we conclude that NC

(Algorithm 3, with sufficiently large k for 100% DR) presents
no gain in terms of number of transmissions when compared
to MPR. Since RGGs are often used to model wireless ad-hoc
networks, this is a discouraging result for Algorithm 3 [8],
which cannot however be generalized to other NC algorithms.

We repeat the same simulations for an RGG with the
nodes placed on a torus to avoid edge effects [17]. To ensure
connected graph realizations and a broad diameter range we
set r0√

A
∈ [0.25, 1], recalling that it differs from the above



non-toroidal case. Fig. 4(a) presents the DR for this case.
Fig. 4(b) shows that NC with sufficiently large k and small
r0√
A

still presents a substantial “delay gain” (1/3 the delay
of MPR for r0√

A
= 0.25). From Fig. 4(c) we observe that

in an RGG with torus geometry, with r0 	 √
A, NC again

outperforms MPR in terms of the number of transmissions.
The fraction TNC/TMPR ranges from 0.7 (k = 3) to 1 (for
k = 0, not shown in the figure), as the diameter converges to 1.
This behavior suggests that, as the diameter of the network
falls, there is little or no benefit in using network coding.
The distinct behaviors of TNC with and without border effects
suggest that Algorithm 3 is affected negatively by the existence
of border nodes in RGGs with average node degree smaller
than the average degree of nodes near the center of the square.

E. Complexity Analysis

Both algorithms rely on the knowledge of 1-hop and 2-hop
neighborhoods. This information can be acquired with periodic
“hello” messages containing the list of neighbors of a node,
with transmission limited to 1-hop. This process has control
traffic cost with complexity Θ(n) [12]. The cost of broad-
casting a message in the network with MPR flooding has a
complexity O(log(n)) in ERGs and a complexity O(n1/3) in
RGGs [12]. With NC flooding, since the cost of broadcasting
a message in the network is asymptotically independent of n
in both topologies, the complexity is Θ(1) (see Section III).

V. CONCLUSIONS

Aiming at a comparison of flooding techniques based on
multipoint relaying and network coding, we evaluated (a)
the number of transmissions per source message and (b) the
incurred delay, both under two relevant classes of random
graph models. Somewhat unintuitively, the analytical part of
our work shows that the number of transmissions required
to flood a message with the NC flooding algorithm under
consideration is asymptotically independent of the number of
nodes. This observation becomes less surprising in retrospect,
if we consider that in ERGs and RGGs a higher number of
nodes corresponds to a higher number of neighbors that can
be reached by a single broadcast transmission. Since random
linear network coding mixes multiple messages in a single
transmission, it is very effective at exploiting the benefits of
increased node density. With multipoint relays, however, the
number of transmissions per message is not independent of
the number of nodes.

Naturally, the number of transmissions depends on other
features of the network topology, as evidenced both by Corol-
laries 1 and 2 and our simulation results. Consequently, the
question as to which scheme should be preferred requires
a nuanced answer. In ERG, NC flooding outperforms MPR
flooding in terms of number of transmissions per source mes-
sage; the extent of this gain is however deeply influenced by
the diameter of the network. Reducing the diameter decreases
both the number of transmissions and the delay gains. A unit
diameter implies no gain at all. In contrast, in general RGGs
(non-toroidal distance metric) the considered NC flooding
algorithm does not bring any benefits in terms of number of

transmissions per message, when compared to MPR flooding.
This appears to be in contradiction with the observation in [8].
However, it is worth noting that [8] focuses on RGGs on a
torus and compares NC with probabilistic routing. Our results
thus indicate that the existence of border effects in general
RGG topologies has a negative effect on the performance of
the considered NC flooding technique.

As part of our ongoing research, we are extending this
analysis to other relevant topologies and more realistic network
models, as well as investigating the combination of NC and
MPR techniques for efficient network flooding.
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