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Abstract—In this paper, an interference-aware path planning
scheme for a network of cellular-connected unmanned aerial
vehicles (UAVs) is proposed. In particular, each UAV acts as a
cellular user equipment (UE) and aims at achieving a tradeoff
between maximizing energy efficiency and minimizing both wireless
latency and the interference caused on the ground network along
its path. The problem is cast as a dynamic game among UAVs. To
solve this game, a deep reinforcement learning algorithm, based
on echo state network (ESN) cells, is proposed. The introduced
deep ESN architecture is trained to allow each UAV to map each
observation of the network state to an action, with the goal of
minimizing a sequence of time-dependent utility functions. Each
UAV uses ESN to learn its optimal path, transmission power, and
cell association vector at different locations along its path. The
proposed algorithm is shown to reach a subgame perfect Nash
equilibrium upon convergence. Simulation results show that the
proposed scheme achieves better wireless latency per UAV and
rate per ground UE while requiring a number of steps that is
comparable to a heuristic baseline that considers moving via the
shortest distance towards the corresponding destinations.

I. INTRODUCTION
Cellular-connected unmanned aerial vehicles (UAVs) will

be an integral component of future wireless networks [1]–
[6]. Such cellular-connected UAV-user equipments (UEs) will
enable a myriad of applications ranging from real-time video
streaming to surveillance. Nevertheless, the ability of UAV-UEs
to establish line-of-sight (LoS) connectivity to cellular base
stations (BSs) is both a blessing and a curse. On the one hand, it
enables high-speed data access for the UAV-UEs. On the other
hand, it can lead to substantial inter-cell mutual interference
among the UAVs and to the ground users. As such, a wide-
scale deployment of UAV-UEs is only possible if interference
management is addressed [3]–[5] and [7].

While some literature has recently studied the use of UAVs
as mobile BSs [8]–[11], the performance analysis of cellular-
connected UAV-UEs (short-handed hereinafter as UAVs) re-
mains relatively scarce [3]–[5]. For instance, in [3], the authors
study the impact of UAVs on the uplink performance of a
ground LTE network. In [4], the authors use measurements
and ray tracing simulations to study the airborne connectivity
requirements and propagation characteristics of UAVs. The
authors in [5] analyze the coverage probability of the downlink
of a cellular network that serves both aerial and ground users.
Nevertheless, this prior art is limited to studying the impact
that cellular-connected UAVs have on the ground network.
Indeed, the existing literature does not provide any concrete
solution for optimizing the performance of a cellular network
that serves both aerial and ground UEs in order to overcome the
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interference challenge that arises in this context. UAV trajectory
optimization is essential in such scenarios. It allows UAVs to
adapt their movement based on the rate requirements of the
aerial and ground UEs, thus improving the overall network
performance. The problem of UAV path planning has been
studied earlier, however, for non-UAV-UE applications [9]–[12].
In [9], the authors propose a distributed path planning algorithm
for multiple UAVs to deliver delay-sensitive information to
different ad-hoc nodes. The authors in [10] optimize a UAV’s
trajectory in an energy-efficient manner. The authors in [11]
propose a mobility model that combines area coverage, network
connectivity, and UAV energy constraints for path planning.
However, despite being interesting, the body of work in [9]–[12]
is restricted to UAVs as BSs and does not account for UAV-
UEs and their associated interference challenges. Hence, the
approaches proposed therein cannot readily be used for cellular-
connected UAVs.

The main contribution of this paper is a novel deep rein-
forcement learning (RL) framework based on echo state network
(ESN) cells for optimizing the trajectories of multiple cellular-
connected UAVs in an online manner. This framework will
allow the UAVs to minimize the interference they cause on the
ground network as well as their wireless transmission latency.
To realize this, we propose a noncooperative game in which
the players are the UAVs and the objective of each UAV is to
autonomously and jointly learn its path, transmit power level,
and association vector. A major challenge in this game is the
need for each UAV to have full knowledge of the ground
network topology, ground UEs service requirements, and other
UAVs’ locations. Therefore, to solve this game, we propose
a deep RL ESN-based algorithm, using which the UAVs can
predict the dynamics of the network and subsequently determine
their optimal paths as well as the allocation of their resources
along their paths. In essence, two important features of our
proposed algorithm are adaptation and generalization. Indeed,
UAVs can take decisions for unseen network states, based on
the reward they got from previous states. This is mainly due
to the use of ESN cells which enable the UAVs to retain their
previous memory states. To our best knowledge, this is the first
work that exploits the framework of deep ESN for interference-
aware path planning of cellular-connected UAVs. Simulation
results show that the proposed approach improves the tradeoff
between energy efficiency, wireless latency, and the interference
level caused on the ground network.

The rest of this paper is organized as follows. Section II
presents the system model. Section III describes the proposed
noncooperative game model. The deep RL ESN-based algorithm
is proposed in Section IV. In Section V, simulation results are
analyzed. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider the uplink (UL) of a wireless cellular network
composed of a set S of S ground BSs, a set Q of Q ground



UEs, and a set J of J cellular-connected UAVs. The UL is
defined as the link from UE q or UAV j to BS s. Each BS
s ∈ S serves a set Ks ⊆ Q of Ks UEs and a set Ns ⊆ J of
Ns cellular-connected UAVs. The total system bandwidth, B,
is divided into a set C of C resource blocks (RBs). Each UAV
j ∈ Ns is allocated a set Cj,s ⊆ C of Cj,s RBs and each UE
q ∈ Ks is allocated a set Cq,s ⊆ C of Cq,s RBs by its serving
BS s. At each BS s, a particular RB c ∈ C is allocated to at
most one UAV j ∈ Ns, or UE q ∈ Ks.

An airborne Internet of Things (IoT) is considered in which
the UAVs are equipped with different IoT devices, such as
cameras, sensors, and GPS that can be used for various appli-
cations such as surveillance, monitoring, delivery and real-time
video streaming. The 3D coordinates of each UAV j ∈ J
and each ground user q ∈ Q are (xj , yj , zj) and (xq, yq, 0),
respectively. All UAVs are assumed to fly at a fixed altitude
zj above the ground (as done in [10], [13], [14]) while the
horizonal coordinates (xj , yj) of each UAV j vary in time. Each
UAV j needs to move from an initial location oj to a final
destination dj while transmitting online its mission-related data
such as sensor recordings, video streams, and location updates.
We assume that the initial and final locations are pre-determined
based on mission objectives.

For ease of exposition, we consider a virtual grid for the
mobility of the UAVs. We discretize the space into a set A of
A equally sized unit areas. The UAVs move along the center of
the areas ca = (xa, ya, za), which yields a finite set of possible
paths pj for each UAV j. The path pj of each UAV j is defined
as a sequence of area units pj = (a1, a2, · · · , al) such that
a1 = oj and al = dj . The area size of the discretized area units
(a1, a2, · · · , aA) ∈ A is chosen to be sufficiently small such
that the UAVs’ locations can be assumed to be approximately
constant within each area even at the maximum UAV’s speed,
as commonly done in the literature [13]. We assume a constant
speed 0 < Vj ≤ V̂j for each UAV where V̂j is the maximum
speed of UAV j. Therefore, the time required by each UAV to
travel between any two unit areas is constant.
A. Channel Models

We consider the sub-6 GHz band and the free-space path loss
model for the UAV-BS data link. The path loss between UAV
j at location a and BS s, ξj,s,a, is given by [15]:
ξj,s,a(dB) = 20 log10(dj,s,a) + 20 log10(fc)− 147.55, (1)

where fc is the center frequency and dj,s,a is the Euclidean
distance between UAV j at location a and BS s. We consider
a Rician small-scale fading between UAV j and ground BS s
thus accounting for the LoS and multipath scatterers that can
be experienced at the BS. In particular, adopting the Rician
channel model for the UAV-BS link is validated by the fact that
the channel between a given UAV and a ground BS is mainly
dominated by a LoS link [10]. We assume that the Doppler
spread due to the mobility of the UAVs is compensated for
based on existing techniques such as frequency synchronization
using a phase-locked loop [16].

For the terrestrial UE-BS links, we consider a Rayleigh fading
channel. For a carrier frequency, fc, 2 GHz, the path loss
between UE q and BS s is given by [17]:

ζq,s(dB) = 15.3 + 37.6 log10(dq,s), (2)

where dq,s is the Euclidean distance between UE q and BS s.
The average signal-to-interference-plus-noise ratio (SINR),

Γj,s,c,a, of the UAV-BS link between UAV j at location a
(a ∈ A) and BS s over RB c will be:

Γj,s,c,a =
Pj,s,c,ahj,s,c,a
Ij,s,c +BcN0

, (3)

where Pj,s,c,a = P̂j,s,a/Cj,s is the transmit power of UAV j at
location a to BS s over RB c and P̂j,s,a is the total transmit
power of UAV j to BS s at location a. Here, the total transmit
power of UAV j is assumed to be distributed uniformly among
all of its associated RBs. hj,s,c,a = gj,s,c,a10−ξj,s,a/10 is the
channel gain between UAV j and BS s on RB c at location a
where gj,s,c,a is the Rician fading parameter. N0 is the noise
power spectral density and Bc is the bandwidth of an RB c.
Ij,s,c =

∑S
r=1,r 6=s(

∑Kr

k=1 Pk,r,chk,s,c+
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′)
is the total interference power on UAV j at BS s when
transmitting over RB c, where

∑S
r=1,r 6=s

∑Kr

k=1 Pk,r,chk,s,c

and
∑S
r=1,r 6=s

∑Nr

n=1 Pn,r,c,a′hn,s,c,a′ correspond, respectively,
to the interference from the Kr UEs and the Nr UAVs (at
their respective locations a′) connected to neighboring BSs r
and transmitting using the same RB c as UAV j. hk,s,c =
mk,s,c10−ζk,s/10 is the channel gain between UE k and BS s on
RB c where mk,s,c is the Rayleigh fading parameter. Therefore,
the achievable data rate of UAV j at location a associated with
BS s can be defined as Rj,s,a =

∑Cj,s

c=1 Bclog2(1 + Γj,s,c,a).
Given the achievable data rate of UAV j and assuming that

each UAV is an M/D/1 queueing system, the corresponding
latency over the UAV-BS wireless link is given by [18]:

τj,s,a =
λj,s

2µj,s,a(µj,s,a − λj,s)
+

1

µj,s,a
, (4)

where λj,s is the average packet arrival rate (packets/s) travers-
ing link (j, s) and originating from UAV j. µj,s,a = Rj,s,a/ν
is the service rate over link (j, s) at location a where ν is the
packet size. On the other hand, the achievable data rate for a
ground UE q served by BS s is given by:

Rq,s =

Cq,s∑
c=1

Bclog2

(
1 +

Pq,s,chq,s,c
Iq,s,c +BcN0

)
, (5)

where hq,s,c = mq,s,c10−ζq,s/10 is the channel gain between
UE q and BS s on RB c and mq,s,c is the Rayleigh fad-
ing parameter. Pq,s,c = P̂q,s/Cq,s is the transmit power of
UE q to its serving BS s on RB c and P̂q,s is the to-
tal transmit power of UE q. Here, we also consider equal
power allocation among the allocated RBs for the ground UEs.
Iq,s,c =

∑S
r=1,r 6=s(

∑Kr

k=1 Pk,r,chk,s,c+
∑Nr

n=1 Pn,r,c,a′hn,s,c,a′)
is the total interference power experienced by UE q at
BS s on RB c where

∑S
r=1,r 6=s

∑Kr

k=1 Pk,r,chk,s,c and∑S
r=1,r 6=s

∑Nr

n=1 Pn,r,c,a′hn,s,c,a′ correspond, respectively, to
the interference from the Kr UEs and the Nr UAVs (at their
respective locations a′) associated with the neighboring BSs r
and transmitting using the same RB c as UE q.

B. Problem Formulation
Our objective is to find the optimal path for each UAV j

based on both its mission objectives and its interference on the
ground network. Thus, we seek to minimize: a) the interference
level that each UAV causes on the ground UEs and other UAVs,
b) the transmission delay over the wireless link, and c) the time
needed to reach the destination. To realize this, we optimize
the paths of the UAVs jointly with the cell association vector
and power control at each location a ∈ A along each UAV’s
path. We consider a directed graph Gj = (V, Ej) for each UAV
j where V is the set of vertices corresponding to the centers
of the unit areas a ∈ A and Ej is the set of edges formed
along the path of UAV j. We let P̂ be the transmission power
vector with each element P̂j,s,a ∈ [0, P j ] being the transmission



power level of UAV j to its serving BS s at location a where
P j is the maximum transmission power of UAV j. α is the path
formation vector with each element αj,a,b ∈ {0, 1} indicating
whether or not a directed link is formed from area a towards
area b for UAV j, i.e., if UAV j moves from a to b along
its path. β is the UAV-BS association vector with each element
βj,s,a ∈ {0, 1} denoting whether or not UAV j is associated with
BS s at location a. Next, we present our optimization problem
whose goal is to determine the path of each UAV along with
its cell association vector and its transmit power level at each
location a along its path pj :

min
P̂ ,α,β

%

J∑
j=1

S∑
s=1

Cj,s∑
c=1

A∑
a=1

S∑
r=1,r 6=s

P̂j,s,ahj,r,c,a
Cj,s

+$

J∑
j=1

A∑
a=1

A∑
b=1,b6=a

αj,a,b + φ

J∑
j=1

S∑
s=1

A∑
a=1

βj,s,aτj,s,a, (6)

A∑
b=1,b 6=a

αj,b,a ≤ 1 ∀j ∈ J , a ∈ A, (7)

A∑
a=1,a6=oj

αj,oj ,a=1 ∀j ∈ J ,
A∑

a=1,a6=dj

αj,a,dj =1 ∀j ∈ J , (8)

A∑
a=1,a6=b

αj,a,b −
A∑

f=1,f 6=b

αj,b,f=0 ∀j ∈ J , b ∈ A (b 6= oj , b 6= dj),

(9)
P̂j,s,a ≥

A∑
b=1,b6=a

αj,b,a ∀j ∈ J , s ∈ S, a ∈ A, (10)

P̂j,s,a ≥ βj,s,a ∀j ∈ J , s ∈ S, a ∈ A, (11)
S∑
s=1

βj,s,a −
A∑

b=1,b6=a

αj,b,a = 0 ∀j ∈ J , a ∈ A, (12)

Cj,s∑
c=1

Γj,s,c,a ≥ βj,s,aΓj ∀j ∈ J , s ∈ S, a ∈ A, (13)

0 ≤ P̂j,s,a ≤ P j ∀j ∈ J ,s ∈ S, a ∈ A, (14)

αj,a,b ∈ {0,1}, βj,s,a ∈ {0,1} ∀j ∈ J , s ∈ S, a, b ∈ A. (15)

The objective function in (6) captures the total interference
level that the UAVs cause on neighboring BSs along their
paths, the length of the paths of the UAVs, and their wireless
transmission delay. %, $ and φ are multi-objective weights used
to control the tradeoff between the three considered metrics.
These weights can be adjusted to meet the requirements of each
UAV’s mission. For instance, the time to reach the destination
is critical in search and rescue missions while the latency is
important for online video streaming. (7) guarantees that each
area a is visited by UAV j at most once along its path pj . (8)
guarantees that the trajectory of each UAV j starts at its initial
location oj and ends at its final destination dj . (9) guarantees
that if UAV j visits area b, it should also leave from area b
(b 6= oj , b 6= dj). (10) and (11) guarantee that UAV j transmits
to BS s at area a with power P̂j,s,a > 0 only if UAV j visits
area a, i.e., a ∈ pj and such that j is associated with BS s at
location a. (12) guarantees that each UAV j is associated with
one BS s at each location a along its path pj . (13) guarantees an
upper limit, Γj , for the SINR value Γj,s,c,a of the transmission
link from UAV j to BS s on RB c at each location a, a ∈ pj .
This, in turn, ensures successful decoding of the transmitted
packets at the serving BS. The value of Γj is application and
mission specific. We note that the SINR check at each location a
is valid for our problem due to the consideration of small-sized

area units. (14) and (15) represent the feasibility constraints. The
formulated optimization problem is a mixed integer non-linear
program, which is computationally complex to solve for large
networks.

To address this challenge, we adopt a distributed approach in
which each UAV decides autonomously on its next path location
along with its corresponding transmit power and association vec-
tor. In fact, a centralized approach requires control signals to be
transmitted to the UAVs at all time. This might incur high round-
trip latencies that are not desirable for real-time applications
such as online video streaming. Further, a centralized approach
requires a central entity to have full knowledge of the current
state of the network and the ability to communicate with all
UAVs at all time. However, this might not be feasible in case the
UAVs belong to different operators or in scenarios in which the
environment changes dynamically. Therefore, we next propose
a distributed approach for each UAV j to autonomously learn its
path pj along with its transmission power level and association
vector at each location a along its path.

III. TOWARDS A SELF-ORGANIZING NETWORK OF AN
AIRBORNE INTERNET OF THINGS

A. Game-Theoretic Formulation
Our objective is to develop a distributed approach that allows

each UAV to take actions in an autonomous and online manner.
For this purpose, we model the multi-agent path planning
problem as a finite dynamic noncooperative game model G
with perfect information [19]. Formally, we define the game
as G = (J , T ,Zj ,Vj ,Πj , uj) with the set J of UAVs being
the agents. T is a finite set of stages which correspond to the
steps required for all UAVs to reach their sought destinations.
Zj is the set of actions that can be taken by UAV j at each
t ∈ T , Vj is the set of all observed network states by UAV j up
to stage T , Πj is a set of probability distributions defined over
all zj ∈ Zj , and uj is the payoff function of UAV j. At each
stage t ∈ T , the UAVs take actions simultaneously. In particular,
each UAV j aims at determining its path pj to its destination
along with its optimal transmission power and cell association
vector for each location a ∈ A along its path pj . Therefore, at
each t, UAV j chooses an action zj(t) ∈ Zj composed of the
tuple zj(t) = (aj(t), P̂j,s,a(t),βj,s,a(t)), where aj(t)={left,
right, forward, backward, no movement} corresponds to a fixed
step size, ãj , in a given direction. P̂j,s,a(t) = [P̂1, P̂2, · · · , P̂O]
corresponds to O different maximum transmit power levels for
each UAV j and βj,s,a(t) is the UAV-BS association vector.

For each UAV j, let Lj be the set of its Lj nearest BSs. The
observed network state by UAV j at stage t, vj(t) ∈ Vj , is:
vj(t)=

[
{δj,l,a(t),θj,l,a(t)}Lj

l=1,θj,dj ,a(t),{xj(t),yj(t)}j∈J
]
, (16)

where δj,l,a(t) is the Euclidean distance from UAV j at lo-
cation a to BS l at stage t, θj,l,a is the orientation angle in
the xy-plane from UAV j at location a to BS l defined as
tan−1(∆yj,l/∆xj,l) [20] where ∆yj,l and ∆xj,l correspond to
the difference in the x and y coordinates of UAV j and BS l,
θj,dj ,a is the orientation angle in the xy-plane from UAV j at lo-
cation a to its destination dj defined as tan−1(∆yj,dj/∆xj,dj ),
and {xj(t),yj(t)}j∈J are the horizonal coordinates of all UAVs
at stage t. For our model, we consider different range intervals
for mapping each of the orientation angle and distance values,
respectively, into different states.

Moreover, based on the optimization problem defined
in (6)-(15) and by incorporating the Lagrangian penalty



method into the utility function definition for the SINR con-
straint (13), the resulting utility function for UAV j at stage t,
uj(vj(t), zj(t), z−j(t)), will be given by:
uj(vj(t), zj(t), z−j(t))

=


Φ(vj(t),zj(t),z−j(t))+C, if δj,dj ,a(t) < δj,dj ,a′(t− 1),

Φ(vj(t),zj(t),z−j(t)), if δj,dj ,a(t) = δj,dj ,a′(t− 1),

Φ(vj(t),zj(t),z−j(t))-C, if δj,dj ,a(t) > δj,dj ,a′(t− 1),
(17)

where Φ(vj(t),zj(t),z−j(t)) is defined as:

Φ(vj(t),zj(t),z−j(t))=−%′
Cj,s(t)∑
c=1

S∑
r=1,r 6=s

P̂j,s,a(vj(t))hj,r,c,a(t)

Cj,s(t)

− φ′τj,s,a(vj(t),zj(t),z−j(t))

− ς(min(0,

Cj,s(t)∑
c=1

Γj,s,c,a(vj(t),zj(t),z−j(t))− Γj))
2, (18)

subject to (7)-(12), (14) and (15). ς is the penalty coefficient for
(13) and C is a constant parameter. a′ and a are the locations
of UAV j at (t− 1) and t where δj,dj ,a is the distance between
UAV j and its destination dj .

B. Equilibrium Analysis
For our game G, we are interested in studying the subgame

perfect Nash equilibrium (SPNE) in behavioral strategies. An
SPNE is a profile of strategies which induces a Nash equilibrium
(NE) on every subgame of the original game. Moreover, a
behavioral strategy allows each UAV to assign independent
probabilities to the set of actions at each network state that is
independent across different network states. Here, note that there
always exists at least one SPNE for any finite horizon extensive
game with perfect information [Selten’s Theorem] [19]. Let
πj(vj(t)) = (πj,z1(vj(t)), πj,z2(vj(t)), · · · , πj,z|Zj |

(vj(t))) ∈
Πj be the behavioral strategy of UAV j at state vj(t) and let
∆(Z) be the set of all probability distributions over the action
space Z . Therefore, the objective of each UAV j for each state
vj(t) and stage t is to maximize its expected sum of discounted
rewards, which is computed as the summation of the immediate
reward for a given state along with the expected discounted
utility of the next states, as given below:
u(vj(t),πj(vj(t)),π-j(vj(t)))

=Eπj(t)

{ ∞∑
l=0

γluj(vj(t+ l),zj(t+ l),z-j(t+ l))|vj,0 = vj

}

=
∑
z∈Z

∞∑
l=0

γluj(vj(t+l),zj(t+l),z-j(t+l))

J∏
j=1

πj,zj (vj(t+l)),

(19)

where γl ∈ (0, 1) is a discount factor for delayed rewards and
Eπj(vj(t)) denotes an expectation over trajectories of states and
actions, in which actions are selected according to πj(vj(t)).
Here, uj is the short-term reward for being in state vj and uj
is the expected long-term total reward from state vj onwards.
Next, we define the notion of an SPNE.

Definition 1. A behavioral strategy (π∗1(vj(t)), · · · ,π∗J(vj(t)))
= (π∗j (vj(t)),π

∗
−j(vj(t))) constitutes a subgame perfect Nash

equilibrium if, ∀j ∈ J , ∀t ∈ T and ∀πj(vj(t)) ∈ ∆(Z),
uj(π

∗
j (vj(t)),π

∗
−j(vj(t))) ≥ uj(πj(vj(t)),π∗−j(vj(t))).

To find the SPNE, each UAV must have full knowledge of
the future reward functions at each information set and thus for

all future network states. This in turn necessitates knowledge
of all possible future actions of all UAVs in the network and
becomes challenging as the number of UAVs increases. To
address this challenge, we rely on deep recurrent neural net-
works (RNNs) [21]. In essence, RNNs exhibit dynamic temporal
behavior and are characterized by their adaptive memory that
enables them to store necessary previous state information to
predict future actions. On the other hand, deep neural networks
are capable of dealing with large datasets. Therefore, next, we
develop a novel deep RL based on ESNs, a special kind of RNN,
for solving the SPNE of our game G.

IV. DEEP REINFORCEMENT LEARNING FOR ONLINE PATH
PLANNING AND RESOURCE MANAGEMENT

In this section, we first introduce a deep ESN-based archi-
tecture that allows UAVs to store previous states whenever
needed while being able to learn future network states. Then,
we propose an RL algorithm based on the proposed deep ESN
architecture to learn an SPNE for our proposed game.

A. Deep ESN Architecture

ESNs are a new type of RNNs with feedback connections
that belong to the family of reservoir computing (RC) [21]. An
ESN is composed of an input weight matrix W in, a recurrent
matrix W , and an output weight matrix W out. Because only
the output weights are altered, ESN training is typically quick
and computationally efficient compared to training other RNNs.
Moreover, multiple non-linear reservoir layers can be stacked
on top of each other resulting in a deep ESN architecture.
Deep ESNs exploit the advantages of a hierarchical temporal
feature representation at different levels of abstraction while
preserving the RC training efficiency. They have the ability
to learn data representations at different levels of abstraction,
hence disentangling the difficulties in modeling complex tasks
by representing them in terms of simpler ones hierarchically. Let
N

(n)
j,R be the number of internal units of the reservoir of UAV j

at layer n, Nj,U be the external input dimension of UAV j and
Nj,L be the number of layers in the stack for UAV j. Next, we
define the following ESN components:
• vj(t) ∈ RNj,U the external input of UAV j at stage t which

effectively corresponds to the current network state,
• x

(n)
j (t) ∈ RN

(n)
j,R as the state of the reservoir of UAV j at

layer n at stage t,
• W

(n)
j,in as the input-to-reservoir matrix of UAV j at layer

n, where W (n)
j,in ∈ R

N
(n)
j,R×Nj,U for n = 1, and W (n)

j,in ∈
RN

(n)
j,R×N

(n−1)
j,R for n > 1,

• W
(n)
j ∈ RN

(n)
j,R×N

(n)
j,R as the recurrent reservoir weight

matrix for UAV j at layer n,
• W j,out ∈ R|Zj |×(Nj,U+

∑
nN

(n)
j,R) as the reservoir-to-output

matrix of UAV j for the nth layer only.
The objective of the deep ESN architecture is to approximate

a function F j = (F 1
j , F

2
j , · · · , F

Nj,L

j ) for learning an SPNE
for each UAV j at each stage t. For each n = 1, 2, · · · , Nj,L,
the function F

(n)
j describes the evolution of the state of the

reservoir at layer n, i.e., x(n)
j (t) = F

(n)
j (vj(t),x

(n)
j (t−1)) for

n = 1 and x(n)
j (t) = F

(n)
j (x

(n−1)
j (t),x

(n)
j (t − 1)) for n >

1. W j,out and x(n)
j (t) are initialized to zero while W (n)

j,in and
W

(n)
j are randomly generated. Note that although the dynamic

reservoir is initially generated randomly, it is combined later



with the external input, vj(t), in order to store the network
states and with the trained output matrix, W j,out, so that it can
approximate the reward function. Moreover, the spectral radius
of W (n)

j (i.e., the largest eigenvalue in absolute value), ρ(n)
j ,

must be strictly smaller than 1 to guarantee the stability of the
reservoir [22]. In fact, the value of ρ(n)

j is related to the variable
memory length of the reservoir that enables the proposed deep
ESN framework to store necessary previous state information,
with larger values of ρ(n)

j resulting in longer memory length.
We next define the deep ESN components: the input and

reward functions. For each deep ESN of UAV j, we distinguish
between two types of inputs: external input, vj(t), that is
fed to the first layer of the deep ESN and corresponds to the
current state of the network and input that is fed to all other
layers for n > 1. For our proposed deep ESN, the input to
any layer n > 1 at stage t corresponds to the state of the
previous layer, x(n−1)

j (t). Define ũj(vj(t), zj(t), z−j(t)) =

uj(vj(t), zj(t), z−j(t))
∏J
j=1 πj,zj (vj(t)) as the

expected value of the instantaneous utility function
uj(vj(t), zj(t), z−j(t)) in (17) for UAV j at stage t.
Therefore, the reward that UAV j obtains from action zj at a
given network state vj(t):
rj(vj(t), zj(t), z−j(t))

=



ũj(vj(t),zj(t),z-j(t)), if UAV j reaches dj ,

ũj(vj(t),zj(t),z-j(t))

+γmaxzj∈Zj
W j,out(zj(t+1),t+1)[v′j(t),

x
′(1)
j (t),x

′(2)
j (t), · · · ,x′(n)

j (t)], otherwise.

(20)

Here, v′j(t+1) and x′(n)
j (t), correspond, respectively, to the next

network state and reservoir state of layer (n), at stage (t+ 1),
upon taking actions zj(t) and z−j(t) at stage t.

B. Update Rule Based on Deep ESN
We now introduce the deep ESN’s update phase that each

UAV uses to store and estimate the reward function of each path
and resource allocation scheme at a given stage t. In particular,
we consider leaky integrator reservoir units [23] for updating
the state transition functions x(n)

j (t) at stage t. Therefore, the
state transition function of the first layer x(1)

j (t) will be:

x
(1)
j (t) = (1− ω(1)

j )x
(1)
j (t− 1)

+ ω
(1)
j tanh(W

(1)
j,invj(t) +W

(1)
j x

(1)
j (t− 1)), (21)

where ω(n)
j ∈ [0, 1] is the leaking parameter at layer n for UAV j

which relates to the speed of the reservoir dynamics in response
to the input, with larger values of ω(n)

j resulting in a faster
response of the corresponding n-th reservoir to the input. The
state transition of UAV j, x(n)

j (t), for n > 1 is given by:

x
(n)
j (t) = (1− ω(n)

j )x
(n)
j (t− 1)

+ ω
(n)
j tanh(W

(n)
j,inx

(n−1)
j (t) +W

(n)
j x

(n)
j (t− 1)), (22)

The output yj(t) of the deep ESN at stage t is used to estimate
the reward of each UAV j based on the current adopted action
zj(t) and z−j(t) of UAV j and other UAVs (−j), respectively,
for the current network state vj(t) after training W j,out. It can
be computed as:
yj(vj(t), zj(t)) = W j,out(zj(t), t)[vj(t),x

(1)
j (t),

x
(2)
j (t), · · · ,x(n)

j (t)]. (23)

We adopt a temporal difference RL approach for training
the output matrix W j,out of the deep ESN architecture. In
particular, we employ a linear gradient descent approach using
the reward error signal, given by the following update rule [24]:

W j,out(zj(t),t+1)=W j,out(zj(t),t)+λj(rj(vj(t),zj(t),z-j(t))

− yj(vj(t),zj(t)))[vj(t),x(1)
j (t),x(2)

j (t), · · · ,x(n)
j (t)]T . (24)

Here, note that the objective of each UAV is to
minimize the value of the error function ej(vj(t)) =
|rj(vj(t),zj(t),z-j(t))− yj(vj(t),zj(t))|.

C. Proposed Deep RL Algorithm
Based on the proposed deep ESN architecture and update

rule, we next introduce a multi-agent deep RL framework that
the UAVs can use to learn an SPNE in behavioral strategies
for the game G. The algorithm is divided into two phases:
training and testing. In the former, UAVs are trained offline
before they become active in the network using the architecture
of Subsection IV-A. The testing phase corresponds to the
actual execution of the algorithm after which the weights of
W j,out,∀j ∈ J have been optimized and is implemented on
each UAV for execution during run time.

During the training phase, each UAV aims at optimizing its
output weight matrix W j,out such that the value of the error
function ej(vj(t)) at each stage t is minimized. In particular,
the training phase is composed of multiple iterations, each
consisting of multiple rounds, i.e., the number of steps required
for all UAVs to reach their corresponding destinations dj . At
each round, UAVs face a tradeoff between playing the action
associated with the highest expected utility, and trying out all
their actions to improve their estimates of the reward function in
(20). This in fact corresponds to the exploration and exploitation
tradeoff, in which UAVs need to strike a balance between
exploring their environment and exploiting the knowledge ac-
cumulated through such exploration [25]. Therefore, we adopt
the ε-greedy policy in which UAVs choose the action that yields
the maximum utility value with a probability of 1 − ε + ε

|Zj |
while exploring randomly other actions with a probability of
ε
|Aj | . The strategy over the action space can thus be defined as:

πj,zj (vj(t)) =

{
1− ε+ ε

|Zj | , argmaxzj∈Zj
yj (vj(t), zj(t)) ,

ε
|Zj | , otherwise.

(25)
Based on the selected action zj(t), each UAV j updates

its location, cell association, and transmission power level and
computes its reward function according to (20). To determine
the next network state, each UAV j broadcasts its selected action
to all other UAVs in the network. Then, each UAV j updates
its state transition vector x(n)

j (t) for each layer (n) of the deep
ESN architecture according to (21) and (22). The output yj at
stage t is then updated based on (23). Finally, the weights of the
output matrix W j,out of each UAV j are updated based on the
linear gradient descent update rule given in (24). Note that, a
UAV stops taking any actions once it has reached its destination.
The convergence complexity of this deep RL algorithm is O(J).
A summary of the training phase is given in Algorithm 1.

Meanwhile, the testing phase corresponds to the actual execu-
tion of the algorithm. In this phase, each UAV chooses its action
greedily for each state vj(t), i.e., argmaxzj∈Zj

yj(vj(t), zj(t)),
and updates its location, cell association, and transmission power
level accordingly. Each UAV then broadcasts its selected action



Algorithm 1: Training phase of the proposed deep RL algorithm
Initialization:
πj,zj

(vj(t)) = 1
|Aj |
∀t ∈ T, zj ∈ Zj , yj(vj(t), zj(t)) = 0, W (n)

j,in, W (n)
j ,

W j,out.

for The number of training iterations do
while At least one UAV j has not reached its destination dj , do

for all UAVs j (in a parallel fashion) do
Input: Each UAV j receives an input vj(t) based on (16).
Step 1: Action selection
Each UAV j selects a random action zj(t) with probability ε,
Otherwise, UAV j selects zj(t) = argmaxzj∈Zj

yj (vj(t), zj(t)).
Step 2: Location, cell association and transmit power update
Each UAV j updates its location, cell association and transmission power
level based on the selected action zj(t).
Step 3: Reward computation
Each UAV j computes its reward values based on (20).
Step 4: Action broadcast
Each UAV j broadcasts its selected action zj(t) to all other UAVs.
Step 5: Deep ESN update
- Each UAV j updates the state transition vector x(n)

j (t) for each layer
(n) of the deep ESN architecture based on (21) and (22).
- Each UAV j computes its output yj (vj(t), zj(t)) based on (23).
- The weights of the output matrix W j,out of each UAV j are updated
based on the linear gradient descent update rule given in (24).

end for
end while

end for
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Fig. 1. Path of a UAV for our approach and shortest path scheme.
TABLE I

Performance assessment for one UAV

# of steps delay (ms) average rate per UE (Mbps)
Proposed approach 32 6.5 0.95

Shortest path 32 12.2 0.76

and updates its state transition vector x(n)
j (t) for each layer n of

the deep ESN architecture based on (21) and (22). It is important
to note that, upon convergence, the convergence strategy profile
corresponds to an SPNE of game G due to the fact that for
any finite game of perfect information, any backward induction
solution is an SPNE [19].

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider an 800 m × 800 m square
area divided into 40 m × 40 m grid areas, in which we randomly
uniformly deploy 15 BSs. All statistical results are averaged over
several independent testing iterations during which the initial
locations and destinations of the UAVs and the location of
the BSs and the ground UEs are randomized. The maximum
transmit power for each UAV is discretized into 5 equally
separated levels. We consider an uncorrelated Rician fading
channel with parameter K̂ = 1.59. The external input of the
deep ESN architecture, vj(t), is a function of the number of
UAVs, and thus the number of hidden nodes per layer, N (n)

j,R ,
varies with the number of UAVs. For instance, N (n)

j,R = 12 and
6 for n = 1 and 2, respectively, for a network size of 1 and 2
UAVs, and 20 and 10 for a network size of 3, 4, and 5 UAVs.
Table II summarizes the main simulation parameters.

TABLE II
SYSTEM PARAMETERS

Parameters Values Parameters Values
UAV max transmit power (P j) 20 dBm SINR threshold (Γj) -3 dB

UE transmit power (P̂q) 20 dBm Learning rate (λj) 0.01
Noise power spectral density (N0) -174 dBm/Hz RB bandwidth (Bc) 180 kHz

Total bandwidth (B) 20 MHz # of interferers (L) 2
Packet arrival rate (λj,s) (0,1) Packet size (ν) 2000 bits

Carrier frequency (fc) 2 GHz Discount factor (γ) 0.7
# of hidden layers 2 Step size (ãj) 40 m

Leaky parameter/layer (ω
(n)
j ) 0.99, 0.99 ε 0.3
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Fig. 2. Performance assessment of the proposed approach in terms of average
(a) wireless latency per UAV and (b) rate per ground UE as compared to the
shortest path approach, for different number of UAVs.

TABLE III
The required number of steps for all UAVs to reach their corresponding destinations
based on our proposed approach and that of the shortest path scheme for different

number of UAVs

# of steps 1 UAV 2 UAVs 3 UAVs 4 UAVs 5 UAVs
Proposed approach 4 4 6 7 8

Shortest path 4 4 6 6 7

Fig. 1 shows a snapshot of the path of a single UAV resulting
from our approach and from a shortest path scheme. Unlike
our proposed scheme which accounts for other wireless metrics
during path planning, the objective of the UAVs in the shortest
path scheme is to merely reach their destinations with the
minimum number of steps. Table I presents the performance
results for the paths shown in Fig. 1. From Fig. 1, we can see
that, for our proposed approach, the UAV selects a path away
from the congested area of BSs while maintaining proximity to
its serving BS in a way that would minimize the steps required
to reach its destination. This in turn minimizes the interference
caused on the ground UEs and its wireless latency (Table I).
From Table I, we can see that our proposed approach achieves
25% increase in the average rate per ground UE and 47%
decrease in the wireless latency as compared to the shortest
path, while requiring the same number of steps to reach its
destination.

Fig. 2 compares the average values of the (a) wireless latency
per UAV and (b) rate per ground UE for our proposed approach
and the baseline shortest path scheme. Moreover, Table III
compares the required number of steps for all UAVs to reach
their corresponding destinations for the scenarios presented in
Fig. 2. From Fig. 2 and Table III, we can see that, compared to
the shortest path scheme, our approach achieves better wireless
latency per UAV and rate per ground UE for different numbers
of UAVs while requiring a number of steps that is comparable
to the baseline. In fact, our scheme provides a better tradeoff
between energy efficiency, wireless latency, and achievable data
rate of the ground UEs compared to the shortest path scheme.
For instance, for 5 UAVs, our scheme achieves a 37% increase
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Fig. 3. Effect of the learning rate on the convergence of offline training.

in the average achievable rate per ground UE, 62% decrease
in the average wireless latency per UAV, and 14% decrease
in energy efficiency. Indeed, one can adjust the multi-objective
weights of our utility function based on the rate requirements
of the ground network, power limitation of the UAVs, and the
maximum tolerable wireless latency of the UAVs. Moreover,
Fig. 2 shows that, as the number of UAVs increases, the average
delay per UAV increases and the average rate per ground UE
decreases, for our scheme as well as that of the shortest path
scheme. This in fact results from the LoS link between the UAVs
and the BSs which in turn increases the interference level on
the ground UEs and other UAVs.

Fig. 3 shows the average of the error function ej(vj(t))
resulting from the offline training phase as a function of a
multiple of 20 iterations while considering different values for
the learning rate, λ. The learning rate determines the step size
the algorithm takes to reach the optimal solution and, thus, it
impacts the convergence rate of our proposed framework. From
Fig. 3, we can see that small values of the learning rate, e.g.,
λ = 0.0001, result in a slow speed of convergence. On the other
hand, for large values of the learning rate, such as λ = 0.1, the
error function decays fast for the first few iterations but then
remains constant. Here, λ = 0.1 does not lead to convergence
during the testing phase, but λ = 0.0001 and λ = 0.01 result
in convergence, though requiring a different number of training
iterations. In fact, a large learning rate can cause the algorithm
to diverge from the optimal solution. This is because large initial
learning rates will decay the loss function faster and thus make
the model get stuck at a particular region of the optimization
space instead of better exploring it [26]. Clearly, our framework
achieves better performance for λ = 0.01, as compared to
smaller and larger values of the learning rate. We also note
that the error function does not reach the value of zero during
the training phase. This is due to the fact that, for our approach,
we adopt the early stopping technique to avoid overfitting which
occurs when the training error decreases at the expense of an
increase in the value of the test error [21].

VI. CONCLUSION

In this paper, we have proposed a novel interference-aware
path planning scheme for a multi-UAV network. We have
formulated the problem as a noncooperative game in which the
UAVs are the players. To solve the game, we have proposed a
deep RL algorithm based on ESN cells which is guaranteed to
reach an SPNE, if it converges. Simulation results have shown
that the proposed approach achieves better wireless latency per

UAV and rate per ground UE while requiring a number of steps
that is comparable to the shortest path scheme.
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