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Abstract—In performance evaluations of communication and An important topology property of a network is the degree

computer networks the underlying topology is sometimes mod  distribution, i.e., the probability mass function of thenmoer

eled as a random graph. To avoid unwanted side effects, some ¢ |inks of a node. It has an impact on various network
researchers force the simulated topologies to be connected i h fivit work i i
Consequently, the resulting distribution of the node degres does properties, such as conneclivity, network resilience acap,

then no longer correspond to that of the underlying random @and message propagation. The degree distributions megulti
graph model. Being not aware of this change in the degree from various random graph models are well-known. The

distribution might result in a simulation pitfall. This pap er Erd6s-Rényi model creates graphs with a binomial degree

addresses the question as to how serious this pitfall mighteb distribution; more sophisticated models often target avie

We analyze the node degree distribution in connected random __., . .. .. . . . 4
networks, deriving an approximation for large networks and an tail distributions, i.e., networks in which hubs occur wih

upper bound for networks of arbitrary order. The tightness of NON-zero probability. _
these expressions is evaluated by simulation. The analysi$ the To analyze the performance of algorithms and protocols,

distribution for large networks is extended to k-connected graphs. a typical approach is to create a set of random graphs in
Results show that specific restricted binomial distributins  Monte-Carlo simulations and use these as underlying n&twor
match the actual degree distribution better than the random q550gies. To avoid unwanted side effects, some researche
graph degree distribution does. Nevertheless, the pitfalbf not ] .
being aware of the change in the distribution seems not to be a force the generated networks to tennectedi.e., all d'SC(?”'
serious mistake in typical setups with large networks. nected topologies created by the random process are déstard
Index Terms—Network theory, connectivity, network model- in the simulation. The algorithm under investigation is cunty
ing, random networks, degree distribution, network simuldion  on the connected topologies. Such simulation methodolsgy i
techniques, simulation pitfalls. used in several fields of communications engineering. Exam-
ples include the analysis of wavelength requirements iicalpt
. INTRODUCTION AND MOTIVATION networks [8], distributed algorithms in ad hoc networks, [9]
flooding and network coding [10], and traffic engineering][11
The topology of communication and computer networks The degree distribution conditioned to the fact that the
is sometimes modeled as a random graph. Random grapBsvork is connected is, however, no longer equivalent to
are in general constructed by starting with a set of nodgfe degree distribution of the random graph model. As a
and adding links between node pairs according to some rudgmple example, an Erdés-Rényi graph may have isolated
A simple approach is to employ Erd6s-Rényi graphs, whefgdes (nodes without links), while a connected ErdésyRén
a link between any pair of nodes in the graph exists witfraph does not have even a single isolated node.
a certain probability, and the existence of a given link is The goa| of this paper is to make researchers aware of
independent of the existence of other links (see [1], [2]). this potential pitfall and analyze the underlying problesing
Such random graphs capture an important feature of reglethods from stochastic graph theory. Questions are: What
world networks: the small-world effect. They do not capfurés the degree distribution of @onnectedandom network? Is
however, other real-world effects, such as link correfaibe- it a serious mistake to assume the degree distribution of the
tween adjacent nodes (needed e.g. to model wireless netjvothderlying random graph model? Focusing on Erdés-Rényi
and the existence of hubs (nodes with many links) observgehphs, we (a) analyze the degree distribution in networtts w
in several types of networks including the Web. To mod@hany nodes and (b) derive an upper bound for the degree
these and other structural properties of real-world netg/ca  distribution in networks with an arbitrary number of nodes.
variety of more refined models were defined (see [3], [4]). The tightness of the expressions is evaluated by simulation
Despite these advances in modeling the structure of reWe finally extend the analysis feconnected networks, taking
world networks, Erdés-Rényi graphs remain a commonlyluseto account robustness against failures.
topology model in communications engineering. They areluse
to evaluate basic performance tradeoffs of new networking Il. BACKGROUND ON GRAPH THEORY
algorithms, and are employed as reference topologies whe\ graph G is a set of nodes connected by links. The
analyzing the impact of topology properties on certain algonumber of nodes itz is theorder n of the graph. Anempty
rithms. Topics under investigation include the spreadifig graph hasn nodes but no links. Aandom graphis a graph
worms and viruses in the Internet [5], search and replioatigenerated by a random process, where a commonly used
in peer-to-peer networks [6], and probabilistic floodind. [7 process is as follows [2]: starting with an empty graph with
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nodes, a link between any node pair is added with probabilijsconnected graphs with isolated nodes. The two events are
p and independent of other links. This model results in eventually equal in a probabilistic sense, and it is legten
random graplz(n, p) where each of the possible links occurso exchange one for the other. In mathematical terms,
independently with probability. Such a graph is commonly lim Pl (@ — (D 0l =1 2
called Erdés-Renyi graphor simply random graph The set 0o [(G con) = (Drmin > 0)] ’ @
of all graphs that can be generated by this random processvizerep < (Inn + Inlnn)/n. Applying this insight to our
denotedG(n, p) or G for short. problem, we can state

The number of links of a node is idegreed, whered & B B
{0,...,n—1}. A node withd = 0 is isolated. The minimum P[D=d|G con — P[D = d| Dmin(G) > 0] ‘ = G
node degred,,;, (G) of a graphG is the smallest degree overwith ¢ — 0 asn — oo.
all nodes inG. In a random graph, each node has a randomuUsing the definition of conditional probability, we have

degree represented by the random varidblérhe probability P[(D =d) N (Dmin > 0)]
that an arbitrary node in a random gra@ln, p) has a certain = P [D = d | Duin(G) > 0] = P D > 0] -
degreed is given by a binomial distribution, i.e., e ()

n—1\ g The probability that there is no isolated node can be bounded

P[D=d| =Ba(n—1,p) = ( d >P (1-p) - as follows (Chapter 3.1 in [13] for a degrég

(1) P[Dmin >0] > 1—Xy with A =p""'. (5)

A pathis a sequence of consecutive links in a graph. Two . L L .
nodes areonnectedf there is a path between them. A grapHApplylng this inequality in (4) and exploiting th‘? fact that
is connectedf there is a path between all pairs of nodes iﬁp[(D =d) N (Dmin > 0)] <P[D = d], we can estimate
the graph. It is called disconnected otherwisecénnected _ . 0 ifd=0
componentis a maximal connected subgraph 6€f i.e., a P[D =d| Dmin(G) > 0] < { P{?—;‘i] if d>0 ©
subgraph in which any two nodes are connected by a path, %Bdn — 50, we havery — 0
to which no more nodes a¥ can be added without losing the |, summary, for larges, the distributionP [D = d | G con

connectivity of the subgraph. A graphisconnectedk€ N) .51 pe approximated b§, (n — 1,p) for d > 0, and is0 for

if there are at least node-disjoint paths between each pair of _ () Thjs binomial distribution can be further approximated
nodes. Equivalently, a graph isconnected if and only if no d

; . by a Poisson distributiof? [D = d] = Py ()\) i= 2~ e~ with
set of(k—1) nodes exists whose removal would disconnect t é/ : ] a (V) = gr e

= np. As a rule of thumb, this approximation is good if
graph. The event that a graghis connected (ok-connected) > 1g§and <10 [14]; henceP [D BZ |G corl ~ kdg 4
is called ‘G con” (or “G k-con”). n= o= : - ~are

for d > 0, and is0O for d = 0.
1. DEGREEDISTRIBUTION OF A CONNECTED RANDOM B. An Upper Bound for the Degree Distribution

NETWORK Let us now derive an upper bound for the conditional degree
We are interested in the degree distribution of a ragfstribution that is valid for arbitrary.. Writing
dom network given that the network is connected. In other
P[(D=d) n (G con
words, we would like to determine the conditional distribat P[D=d|G con = I P [2; coEi )] , @)

P[D =d| G con|. This means that among all graphs ¢h ) . .
we only take the connected ones and analyze their degR¥ @pproach is to overestimate the numerator and give an

distribution. In this section, we first give an approximatio €Xact solution for the denominator. By basic probabilitgaty
for large networks (many nodes). Second, we derive an up¥& haveP (D = d) N (G con)] < P[D = dJ, which yields
bound for the conditional distribution that is also for shmal (ngl)pd (1 _p)”*lfd
networks (arbitrary number of nodes). Finally, we assess th P[D=d|G con] < (8)
X . ) . P [G(n,p) con

tightness of both expressions by simulation.

for d € N, and zero ford = 0.

A. Asymptotic Behavior of the Degree Distribution The probability that a random gragh(n, p) is connected
The condition that a grapti has no isolated node is a nec*a" be calc_ulated usin_g the recur_sive approach by Gilbgrt [2

essary but not sufficient condition f6¥ to be connected. This Let us consider an arbitrary node in a graph. The node belongs

observation is also true for random graphs, where the setBd conngcted component of ordzerthh i€{lL,...,n}, if

connected graphs i is a subset of the set of graphs Withou{he node |s_(;onnect(a_d to exgcﬂy— 1) nodes of the graph.

isolated nodes. Henc®,[G conl < P [Dyin(G)>0] holds. ' N€ probability for this event is [2]

The relationship between the two events ton” and “no N (n—1 , i(n—i)

isolated node inG” was analyzed in the theory of random a(np,i) = ('— 1) P1GG,p) conf (1 —p) - ©)

graphs. An important observation is the following (see [12]

and [13]): if the number of nodesis sufficiently largealmost il o -
onnected to the given node. The tefin— p)l(” %) denotes the probability

every graphn g without any isolated node '§ also ConneCte(fhat none of the nodes within a setohodes has a link to any of the other
In other words, the random graph process yields only very few— i) nodes of the graph.

There are ("*1) possibilities to choose thé; — 1) nodes that are



The given node is connected to eitherl, ..., (n — 2) or the restricted binomial distribution is about half the MS#&
(n — 1) nodes, which means that" , a(n,p,i) = 1. As the binomial distributior3,4(9, 0.300) of all graphs. The upper
a(n,p,n) = P[G(n,p) con, we finally obtain bound is not tight with these parameters.
B Fig. 1(b) shows the distribution fa&f, =G(10, 0.445). Here,
PlG(n.p) corl‘] - (10) 95 % of the simulated graphs are connected. The MSE de-
B — (n—1 _ i(n—i) creases by one order of magnitude; the relative differemee b
= 1- Z; (Z — 1> P[G(i,p) coni (1 —p) ’ tween MSE and MSE, increases. Both the restricted binomial
. = o . distribution and the upper bound yield good approximations
This result can pe gpplled in (8) to yield an upper bound for Figs. 1(c) and 1(d) show the results far = 100 nodes
the degree distribution of connected random graphs. with a connectivity rate of65% and 95%. As expected,

C. Simulation-Based Analysis of the Degree Distribution the restricted binomial distribution gets closer to thel rea

. o distribution. As forn = 10, the upper bound is weak for a
To evaluate the tightness of the approximation and the upper o > .
o : ."Mow connectivity, whereas it gives a reasonable approxonat
bound for the degree distribution, a number of simulatio

S . L . L
are performed. Different random graph modélén, p) are Br a high connectivity. This behavior is supported furtirer

used, whose parameters are listed in Table I. These mo QI% simulations of = 1000 nodes (see Figs. 1(e) and 1(f)).

. : . n conclusion, the restricted binomial distribution hag th
are selected for the following reasons: First, we are isteke . e .
. ; advantage of being closer to the real distribution esplgcial
in comparing three network orders, namely= 10, 100, and

. . . . for small networks. The bound has the advantage of always
1000. Second, we are interested in comparing different con- g Y

s . o giving an upper limit for the probability of a certain degree

nectivity levels, where we choose a medium connectivitglev:, . o
. L it is, however, a weak approximation for weakly connected

(P[G con=65%) and a high connectivity levelX((G con = networks

95 %). To obtain the appropriate connectivity level for given '

n, the link probabilityp leading to the appropriate fraction of V. DEGREEDISTRIBUTION OF A k-CONNECTED RANDOM

connected graphs (with a maximum absolute error-0f%) NETWORK

is chosen. Using the softwaR with i gr aph, at least10° We are now interested in the degree distribution conditione

graphs are generated for eath, p)-pair, and a normalized py the fact that a network i&-connected (i.e., there are at

degree histogram of all connected graphs is created. The tgéast & node-disjoint paths between each node pair). Such

4 in Table I gives the fraction of graphs that are disconnect@shologies are motivated by the demand for robustness stgain

but have a non-zero minimum degree. node and link failures or the request for multipath routifigr
wireless multihop networks, topology control algorithneavé
TABLE | ) . . Lo

SIMULATED RANDOM GRAPHMODELS been invented to adjust the power of devices to maintain

connectivity [15]. In the following, we focus on the asymjito

P [G con ) ) S . . .
G 178 0 3018 [64 9(7] 1102 behavior and the distribution obtained by simulations.
a- . . 0 .
Gy 10 0.445 951% 2-1073 A. Asymptotic Behavior of the Degree Distribution

ymp J

ge: 100 0.0536 65.1% 4’10:: In a k-connected graph, each node must have at least
Ga: 100 00737 95.0% 1107 k neighbors. Hence, the conditiafy,;,(G) > k is neces-
Ger 1000 0.00773 65.0 % 5'1075 sary but not sufficient forG to be k-connected. For ran-
gy: 1000 0.00984 950% 1-10 dom graphs, the set of-connected graphs is a subset of

the graphs with a minimum degree of at ledst Thus,

Fig. 1 shows the results, comparing four metrics: PG k-con < P[Dyn(G) > k. Beyond this, the theory

. i . C?f random graphs was able to generalize the statement that
o simulated (“real”) degree distribution of all connecte | d h with isolated node i
graphs almost every random graph without any isolated node is

approximation for the asymptotic degree distribution jornected” (Section 1ll-A) tok-connectivity: almost every
* app ymp 9 ; ; .rzilndom graph in which each node has at léaskighbors is

all connected graphs, given by the restricted bmom'%-connected Ifa is large andp < (Inn + & Inlnn)/n, then

distribution shown on the right hand side of (6), ' 9 = '

T P[ (G k-con) = (Dwmin(G) > k)| — 1 (see Ch. 7.2 in [13]).
* upper bognd fpr the degree distribution of all COnneCte,gpplying this to our problem, if the network has sufficiently
graphs, given in (8), and

« degree distribution of all graphs (binomial distribution) many nodes, we have
We calculate two mean square errors: M3 the restricted ‘ P[D=d|G k-con—P[D=d|Dnin(G) > k] | <e (11)
binomial distribution compared to the simulated distribnf With & — 0 asm — oo
and MSE .Of t_he binomial distribution compared to the simu- To deal with P [Dun(G) > k], we introduce the random
lated distribution. The squared sums are taken over allegegr _ . . : .
variable X; denoting the number of nodes with degrem a

valuesd =0,...,n — 1. .
Fig. 1(a) shows the results fa, — G(10,0.300), where random graph. From Chapter 3.1 in [13], we know

65 % of the generated graphs are connected. The MSE P[X;=0] > 1-\ (12)
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with \; given by a negative binomial distribution, i.e.,

n+1t—2
7

N (i AN (RO e
A graph with minimum degree: has X; = 0 for all
i €
Iy PIXs = 0] =TTy (1= N).

Applying these results in (11) yields
0 ifd<k

P[D=d] .
Tra-n if d>k
) (14)

For a graphG(n,p), the termP[D = d] is the binomial
distribution (1), and the denominator goesltdor n — oc.
Thus, for largen, the distributionP [D = d | G k-cor] can be
approximated by3; (n — 1,p) for d > k, and is0 for d < k.

P[D =d| Duin(G) 2 k] < {

B. Simulation-Based Analysis of the Degree Distribution

The main contribution is an approximation for the degree
distribution of k-connected graphs with many nodes. This
expression yields a better approximation than the original
random graph degree distribution for most degree values; it
even yields a reasonable approximation for small networks

[0,..,k — 1], the probability for this event being (heren = 10). Furthermore, an upper bound for the degree

distribution of 1-connected networks has been derived. It
gives an upper limit for the probability of a given degree
but represents a worse approximation, especially for weakl
connected networks.

From a practical point of view, the results show the pitfall o
not being aware of the change in the distribution does nohsee
to be a serious mistake in typical setups with many nodes. The
difference is visible mainly in small networks.
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10% random graphs. The results are shown in Fig. 2.
We first interpret the results forn = 10. About 64 % of

the graphs inG, are 2-connected; their degree distribution 1]
is given in Fig. 2(a). Clearly, the MSE to the binomial 2]
distribution is much larger than it is fdrconnected graphs in

the same set. The restricted binomial distribution yieldaia

approximation; its MSE is, however, one order of magnitudegy)

higher than forl-connected graphs. Fig. 2(b) consid&s

connected networks i@, (11 % of all graphs). The error of the

binomial distribution increases with increasing connafti

The error of the restricted binomial distribution also ie@ses

but yields a significantly better approximation.

Increasingn to 100 and finally to1000 (Figs. 2(c)+(e)), the
fraction of2-connected graphs is only slightly reduced. In both

cases, the restricted binomial distribution offers a raabte
approximation of the simulated distribution. Clearly, thp-

proximation becomes tighter (MGElecreases) asincreases.
The same is true for the degree distribution3sonnected

networks in Figs. 2(d) and (f).
We interpret the results as follows: First, the restrictetbb

mial distribution always yields a lower MSE than the binomia
distribution (MSE, < MSE;). Even for small networks, it is [11]
better to assume (14) than the binomial distribution. Sdcon
the MSE of the restricted binomial distribution decreases {12
increasingn (cp. figures in one column vertically). Third,[13]
the MSE of the restricted binomial distribution increases f [14]

increasingk (cp. e.g. Figs. 1(b), 2(a), 2(b)).

V. CONCLUSIONS
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(d) n = 100, p = 0.0737, 2.4% are 3-con;
MSE, = 1-10~%, MSE, = 4-10—%
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() n=1000, p=0.00984, 0.54 % are 3-con;
MSE, =4-10"6, MSE, =1-10"°

Fig. 2. Degree distribution o2- and 3-connected random networks.





