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Abstract—In performance evaluations of communication and
computer networks the underlying topology is sometimes mod-
eled as a random graph. To avoid unwanted side effects, some
researchers force the simulated topologies to be connected.
Consequently, the resulting distribution of the node degrees does
then no longer correspond to that of the underlying random
graph model. Being not aware of this change in the degree
distribution might result in a simulation pitfall. This pap er
addresses the question as to how serious this pitfall might be.

We analyze the node degree distribution in connected random
networks, deriving an approximation for large networks and an
upper bound for networks of arbitrary order. The tightness of
these expressions is evaluated by simulation. The analysisof the
distribution for large networks is extended tok-connected graphs.

Results show that specific restricted binomial distributions
match the actual degree distribution better than the random
graph degree distribution does. Nevertheless, the pitfallof not
being aware of the change in the distribution seems not to be a
serious mistake in typical setups with large networks.

Index Terms—Network theory, connectivity, network model-
ing, random networks, degree distribution, network simulation
techniques, simulation pitfalls.

I. I NTRODUCTION AND MOTIVATION

The topology of communication and computer networks
is sometimes modeled as a random graph. Random graphs
are in general constructed by starting with a set of nodes
and adding links between node pairs according to some rule.
A simple approach is to employ Erdős-Rényi graphs, where
a link between any pair of nodes in the graph exists with
a certain probability, and the existence of a given link is
independent of the existence of other links (see [1], [2]).

Such random graphs capture an important feature of real-
world networks: the small-world effect. They do not capture,
however, other real-world effects, such as link correlations be-
tween adjacent nodes (needed e.g. to model wireless networks)
and the existence of hubs (nodes with many links) observed
in several types of networks including the Web. To model
these and other structural properties of real-world networks, a
variety of more refined models were defined (see [3], [4]).

Despite these advances in modeling the structure of real-
world networks, Erdős-Rényi graphs remain a commonly used
topology model in communications engineering. They are used
to evaluate basic performance tradeoffs of new networking
algorithms, and are employed as reference topologies when
analyzing the impact of topology properties on certain algo-
rithms. Topics under investigation include the spreading of
worms and viruses in the Internet [5], search and replication
in peer-to-peer networks [6], and probabilistic flooding [7].

An important topology property of a network is the degree
distribution, i.e., the probability mass function of the number
of links of a node. It has an impact on various network
properties, such as connectivity, network resilience, capacity,
and message propagation. The degree distributions resulting
from various random graph models are well-known. The
Erdős-Rényi model creates graphs with a binomial degree
distribution; more sophisticated models often target at heavy-
tail distributions, i.e., networks in which hubs occur witha
non-zero probability.

To analyze the performance of algorithms and protocols,
a typical approach is to create a set of random graphs in
Monte-Carlo simulations and use these as underlying network
topologies. To avoid unwanted side effects, some researchers
force the generated networks to beconnected, i.e., all discon-
nected topologies created by the random process are discarded
in the simulation. The algorithm under investigation is runonly
on the connected topologies. Such simulation methodology is
used in several fields of communications engineering. Exam-
ples include the analysis of wavelength requirements in optical
networks [8], distributed algorithms in ad hoc networks [9],
flooding and network coding [10], and traffic engineering [11].

The degree distribution conditioned to the fact that the
network is connected is, however, no longer equivalent to
the degree distribution of the random graph model. As a
simple example, an Erdős-Rényi graph may have isolated
nodes (nodes without links), while a connected Erdős-Rényi
graph does not have even a single isolated node.

The goal of this paper is to make researchers aware of
this potential pitfall and analyze the underlying problem using
methods from stochastic graph theory. Questions are: What
is the degree distribution of aconnectedrandom network? Is
it a serious mistake to assume the degree distribution of the
underlying random graph model? Focusing on Erdős-Rényi
graphs, we (a) analyze the degree distribution in networks with
many nodes and (b) derive an upper bound for the degree
distribution in networks with an arbitrary number of nodes.
The tightness of the expressions is evaluated by simulation.
We finally extend the analysis tok-connected networks, taking
into account robustness against failures.

II. BACKGROUND ON GRAPH THEORY

A graph G is a set of nodes connected by links. The
number of nodes inG is theorder n of the graph. Anempty
graph hasn nodes but no links. Arandom graphis a graph
generated by a random process, where a commonly used
process is as follows [2]: starting with an empty graph withn
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nodes, a link between any node pair is added with probability
p and independent of other links. This model results in a
random graphG(n, p) where each of the possible links occurs
independently with probabilityp. Such a graph is commonly
called Erdős-Ŕenyi graphor simply random graph. The set
of all graphs that can be generated by this random process is
denotedG(n, p) or G for short.

The number of links of a node is itsdegreed, whered ∈
{0, . . . , n − 1}. A node withd = 0 is isolated. The minimum
node degreedmin(G) of a graphG is the smallest degree over
all nodes inG. In a random graph, each node has a random
degree represented by the random variableD. The probability
that an arbitrary node in a random graphG(n, p) has a certain
degreed is given by a binomial distribution, i.e.,

P [D = d] = Bd (n − 1, p) :=

(

n − 1

d

)

p d (1 − p)
n−1−d

.

(1)
A path is a sequence of consecutive links in a graph. Two

nodes areconnectedif there is a path between them. A graph
is connectedif there is a path between all pairs of nodes in
the graph. It is called disconnected otherwise. Aconnected
componentis a maximal connected subgraph ofG, i.e., a
subgraph in which any two nodes are connected by a path, and
to which no more nodes ofG can be added without losing the
connectivity of the subgraph. A graph isk-connected(k∈ N)
if there are at leastk node-disjoint paths between each pair of
nodes. Equivalently, a graph isk-connected if and only if no
set of(k−1) nodes exists whose removal would disconnect the
graph. The event that a graphG is connected (ork-connected)
is called “G con” (or “G k-con”).

III. D EGREEDISTRIBUTION OF A CONNECTEDRANDOM

NETWORK

We are interested in the degree distribution of a ran-
dom network given that the network is connected. In other
words, we would like to determine the conditional distribution
P [D = d | G con]. This means that among all graphs inG
we only take the connected ones and analyze their degree
distribution. In this section, we first give an approximation
for large networks (many nodes). Second, we derive an upper
bound for the conditional distribution that is also for small
networks (arbitrary number of nodes). Finally, we assess the
tightness of both expressions by simulation.

A. Asymptotic Behavior of the Degree Distribution

The condition that a graphG has no isolated node is a nec-
essary but not sufficient condition forG to be connected. This
observation is also true for random graphs, where the set of
connected graphs inG is a subset of the set of graphs without
isolated nodes. Hence,P [G con] ≤ P [Dmin(G)>0] holds.

The relationship between the two events “G con” and “no
isolated node inG” was analyzed in the theory of random
graphs. An important observation is the following (see [12]
and [13]): if the number of nodesn is sufficiently large,almost
every graphin G without any isolated node is also connected.
In other words, the random graph process yields only very few

disconnected graphs with isolated nodes. The two events are
eventually equal in a probabilistic sense, and it is legitimate
to exchange one for the other. In mathematical terms,

lim
n→∞

P
[

(G con) = (Dmin > 0)
]

= 1 , (2)

where p ≤ (ln n + ln lnn)/n. Applying this insight to our
problem, we can state

∣

∣

∣
P [D = d | G con] − P [D = d | Dmin(G) > 0]

∣

∣

∣
≤ ε (3)

with ε → 0 asn → ∞.
Using the definition of conditional probability, we have

P [D = d | Dmin(G) > 0] =
P [(D = d) ∩ (Dmin > 0)]

P [Dmin > 0]
.

(4)
The probability that there is no isolated node can be bounded
as follows (Chapter 3.1 in [13] for a degree0):

P [Dmin > 0] ≥ 1 − λ0 with λ0 = pn−1 . (5)

Applying this inequality in (4) and exploiting the fact that
P [(D = d) ∩ (Dmin > 0)] ≤ P [D = d], we can estimate

P [D = d | Dmin(G) > 0] ≤

{

0 if d = 0
P[D=d]
1−λ0

if d > 0
. (6)

As n → ∞, we haveλ0 → 0.
In summary, for largen, the distributionP [D = d | G con]

can be approximated byBd (n − 1, p) for d > 0, and is0 for
d = 0. This binomial distribution can be further approximated
by a Poisson distributionP [D = d] = Pd (λ) := λd

d! e−λ with
λ = np. As a rule of thumb, this approximation is good if
n≥100 andnp≤10 [14]; hence,P [D = d | G con] ≈ λd

d! e−λ

for d > 0, and is0 for d = 0.

B. An Upper Bound for the Degree Distribution

Let us now derive an upper bound for the conditional degree
distribution that is valid for arbitraryn. Writing

P [D = d | G con] =
P [(D = d) ∩ (G con)]

P [G con]
, (7)

our approach is to overestimate the numerator and give an
exact solution for the denominator. By basic probability theory
we haveP [(D = d) ∩ (G con)] ≤ P [D = d], which yields

P [D = d | G con] ≤

(

n−1
d

)

p d (1 − p)
n−1−d

P [G(n, p) con]
(8)

for d ∈ N, and zero ford = 0.
The probability that a random graphG(n, p) is connected

can be calculated using the recursive approach by Gilbert [2].
Let us consider an arbitrary node in a graph. The node belongs
to a connected component of orderi, with i∈ {1, . . . , n}, if
the node is connected to exactly(i − 1) nodes of the graph.
The probability for this event is [2]1

α(n, p, i) :=

(

n − 1

i − 1

)

P [G(i, p) con] (1 − p)i(n−i) . (9)

1There are
(

n−1
i−1

)

possibilities to choose the(i − 1) nodes that are

connected to the given node. The term(1− p)i(n−i) denotes the probability
that none of the nodes within a set ofi nodes has a link to any of the other
(n − i) nodes of the graph.



The given node is connected to either0, 1, . . . , (n − 2) or
(n − 1) nodes, which means that

∑n

i=1 α(n, p, i) = 1. As
α(n, p, n) = P [G(n, p) con], we finally obtain

P [G(n, p) con] = (10)

= 1 −
n−1
∑

i=1

(

n − 1

i − 1

)

P [G(i, p) con] (1 − p)
i(n−i)

.

This result can be applied in (8) to yield an upper bound for
the degree distribution of connected random graphs.

C. Simulation-Based Analysis of the Degree Distribution

To evaluate the tightness of the approximation and the upper
bound for the degree distribution, a number of simulations
are performed. Different random graph modelsG(n, p) are
used, whose parameters are listed in Table I. These models
are selected for the following reasons: First, we are interested
in comparing three network orders, namelyn = 10, 100, and
1000. Second, we are interested in comparing different con-
nectivity levels, where we choose a medium connectivity level
(P [G con]=65 %) and a high connectivity level (P [G con]=
95 %). To obtain the appropriate connectivity level for given
n, the link probabilityp leading to the appropriate fraction of
connected graphs (with a maximum absolute error of±1 %)
is chosen. Using the softwareR with igraph, at least106

graphs are generated for each(n, p)-pair, and a normalized
degree histogram of all connected graphs is created. The term
δ in Table I gives the fraction of graphs that are disconnected
but have a non-zero minimum degree.

TABLE I
SIMULATED RANDOM GRAPH MODELS

n p P [G con] δ

Ga: 10 0.300 64.9 % 4 · 10−2

Gb: 10 0.445 95.1 % 2 · 10−3

Gc: 100 0.0536 65.1 % 4 · 10−3

Gd: 100 0.0737 95.0 % 1 · 10−4

Ge: 1000 0.00773 65.0 % 5 · 10−4

Gf : 1000 0.00984 95.0 % 1 · 10−5

Fig. 1 shows the results, comparing four metrics:
• simulated (“real”) degree distribution of all connected

graphs,
• approximation for the asymptotic degree distribution of

all connected graphs, given by the restricted binomial
distribution shown on the right hand side of (6),

• upper bound for the degree distribution of all connected
graphs, given in (8), and

• degree distribution of all graphs (binomial distribution).
We calculate two mean square errors: MSEa of the restricted

binomial distribution compared to the simulated distribution,
and MSEb of the binomial distribution compared to the simu-
lated distribution. The squared sums are taken over all degree
valuesd = 0, . . . , n − 1.

Fig. 1(a) shows the results forGa = G(10, 0.300), where
65 % of the generated graphs are connected. The MSEa of

the restricted binomial distribution is about half the MSEb of
the binomial distributionBd(9, 0.300) of all graphs. The upper
bound is not tight with these parameters.

Fig. 1(b) shows the distribution forGb =G(10, 0.445). Here,
95 % of the simulated graphs are connected. The MSE de-
creases by one order of magnitude; the relative difference be-
tween MSEa and MSEb increases. Both the restricted binomial
distribution and the upper bound yield good approximations.

Figs. 1(c) and 1(d) show the results forn = 100 nodes
with a connectivity rate of65 % and 95 %. As expected,
the restricted binomial distribution gets closer to the real
distribution. As forn = 10, the upper bound is weak for a
low connectivity, whereas it gives a reasonable approximation
for a high connectivity. This behavior is supported furtherin
the simulations ofn = 1000 nodes (see Figs. 1(e) and 1(f)).

In conclusion, the restricted binomial distribution has the
advantage of being closer to the real distribution especially
for small networks. The bound has the advantage of always
giving an upper limit for the probability of a certain degree;
it is, however, a weak approximation for weakly connected
networks.

IV. D EGREEDISTRIBUTION OF A k-CONNECTEDRANDOM

NETWORK

We are now interested in the degree distribution conditioned
by the fact that a network isk-connected (i.e., there are at
least k node-disjoint paths between each node pair). Such
topologies are motivated by the demand for robustness against
node and link failures or the request for multipath routing.For
wireless multihop networks, topology control algorithms have
been invented to adjust the power of devices to maintaink-
connectivity [15]. In the following, we focus on the asymptotic
behavior and the distribution obtained by simulations.

A. Asymptotic Behavior of the Degree Distribution

In a k-connected graph, each node must have at least
k neighbors. Hence, the conditiondmin(G) ≥ k is neces-
sary but not sufficient forG to be k-connected. For ran-
dom graphs, the set ofk-connected graphs is a subset of
the graphs with a minimum degree of at leastk. Thus,
P [G k-con] ≤ P [Dmin(G) ≥ k]. Beyond this, the theory
of random graphs was able to generalize the statement that
“almost every random graph without any isolated node is
connected” (Section III-A) tok-connectivity: almost every
random graph in which each node has at leastk neighbors is
k-connected. Ifn is large andp ≤ (lnn + k ln lnn)/n, then
P
[

(G k-con) = (Dmin(G) ≥ k)
]

→ 1 (see Ch. 7.2 in [13]).
Applying this to our problem, if the network has sufficiently
many nodes, we have
∣

∣

∣
P [D = d | G k-con]−P [D = d | Dmin(G) ≥ k]

∣

∣

∣
≤ ε (11)

with ε → 0 asn → ∞.
To deal with P [Dmin(G) ≥ k], we introduce the random

variableXi denoting the number of nodes with degreei in a
random graph. From Chapter 3.1 in [13], we know

P [Xi = 0] ≥ 1 − λi (12)
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(a) n = 10, p = 0.300; 64.86 % are con;
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(b) n = 10, p = 0.445; 95.08 % are con;
MSEa = 1.9·10−5, MSEb = 4.5·10−5
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(c) n = 100, p = 0.0536; 65.07% are con;
MSEa = 8.5.1·10−6, MSEb = 2.7·10−5
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(d) n = 100, p = 0.0737; 95.00% are con;
MSEa = 1.2·10−7, MSEb = 3.8·10−7
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(e) n = 1000, p = 0.00773; 65.00% are con;
MSEa =8.7·10−8, MSEb =2.7·10−7
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(f) n = 1000, p = 0.00984; 95.00 % are con;
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Fig. 1. Degree distribution of connected random networks.



with λi given by a negative binomial distribution, i.e.,

λi = NBi (n − 1, p) :=

(

n + i − 2

i

)

pn−1 (1 − p)
i

. (13)

A graph with minimum degreek has Xi = 0 for all
i ∈ [0, .., k − 1], the probability for this event being
∏k−1

i=0 P [Xi = 0] ≥
∏k−1

i=0 (1 − λi).
Applying these results in (11) yields

P [D = d | Dmin(G) ≥ k] ≤

{

0 if d < k
P[D=d]

∏

k−1

i=0
(1−λi)

if d ≥ k .

(14)
For a graphG(n, p), the term P [D = d] is the binomial
distribution (1), and the denominator goes to1 for n → ∞.
Thus, for largen, the distributionP [D = d | G k-con] can be
approximated byBd (n − 1, p) for d ≥ k, and is0 for d < k.

B. Simulation-Based Analysis of the Degree Distribution

Let us evaluate the tightness of the restricted binomial
distribution (14). TheLibrary of Efficient Data Types &
Algorithms (LEDA) generates random graphs and verifiesk-
connectivity. We focus on2- and3-connected networks using
the modelsGb, Gd, andGf (Table I), and analyzing at least
106 random graphs. The results are shown in Fig. 2.

We first interpret the results forn = 10. About 64 % of
the graphs inGb are 2-connected; their degree distribution
is given in Fig. 2(a). Clearly, the MSE to the binomial
distribution is much larger than it is for1-connected graphs in
the same set. The restricted binomial distribution yields afair
approximation; its MSE is, however, one order of magnitude
higher than for1-connected graphs. Fig. 2(b) considers3-
connected networks inGb (11 % of all graphs). The error of the
binomial distribution increases with increasing connectivity.
The error of the restricted binomial distribution also increases
but yields a significantly better approximation.

Increasingn to 100 and finally to1000 (Figs. 2(c)+(e)), the
fraction of2-connected graphs is only slightly reduced. In both
cases, the restricted binomial distribution offers a reasonable
approximation of the simulated distribution. Clearly, theap-
proximation becomes tighter (MSEa decreases) asn increases.
The same is true for the degree distribution of3-connected
networks in Figs. 2(d) and (f).

We interpret the results as follows: First, the restricted bino-
mial distribution always yields a lower MSE than the binomial
distribution (MSEa < MSEb). Even for small networks, it is
better to assume (14) than the binomial distribution. Second,
the MSE of the restricted binomial distribution decreases for
increasingn (cp. figures in one column vertically). Third,
the MSE of the restricted binomial distribution increases for
increasingk (cp. e.g. Figs. 1(b), 2(a), 2(b)).

V. CONCLUSIONS

Motivated by the fact that disconnected random topologies
are discarded in simulations of communication and computer
networks, we analyzed the degree distribution of connected
andk-connected random graphs.

The main contribution is an approximation for the degree
distribution of k-connected graphs with many nodes. This
expression yields a better approximation than the original
random graph degree distribution for most degree values; it
even yields a reasonable approximation for small networks
(heren = 10). Furthermore, an upper bound for the degree
distribution of 1-connected networks has been derived. It
gives an upper limit for the probability of a given degree
but represents a worse approximation, especially for weakly
connected networks.

From a practical point of view, the results show the pitfall of
not being aware of the change in the distribution does not seem
to be a serious mistake in typical setups with many nodes. The
difference is visible mainly in small networks.
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(e) n = 1000, p = 0.00984, 60.5% are 2-con;
MSEa =5·10−6, MSEb =5·10−6
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(f) n = 1000, p = 0.00984, 0.54% are 3-con;
MSEa =4·10−6, MSEb =1·10−5

Fig. 2. Degree distribution of2- and3-connected random networks.




