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Abstract—Considering n nodes performing random access
using ALOHA with s slots, we study the probability that there
occurs a non-colliding message in the first non-empty slot. If each
node transmits with probability p in each slot and the number of
slots is sufficiently large, a non-colliding first message occurs with
probability & = 1—np/2 for large n and small np. If the number
of slots is limited, the probability ® is lower but can be maximized
choosing an optimal p. To maximize ® further, nodes can apply
a slot-dependent transmit probability p; with ¢ = 1,...,s. It is
shown that a “slow start strategy,” in which p; is low for low i and
increases with increasing i, is beneficial. Our main contribution
is an equation for the p; values that maximize ®. We analyze
how a higher probability of a non-colliding first message comes
at the price of an increased delay of such a message. Besides
being of interest for the theory of random access, the results are
practically applicable to node selection protocols, such as relay
selection in cooperative wireless networks.

Index Terms—Medium access control, ALOHA, first message,
collision probability, random access.

I. INTRODUCTION AND MOTIVATION

Several techniques in wireless and wired networking require
some form of node selection mechanism in which one out of
multiple nodes is selected, in a distributed manner, to under-
take a certain task. Such a mechanism is needed, for example,
for cooperative relaying techniques in wireless networks to
choose a “relay node” [1] and for data processing techniques
in sensor networks to choose a “data gathering node” [2].

Node selection operates above the medium access control
(MAC) layer and can be achieved in two steps: First, a set
of candidate nodes is determined. Each node in this set must
fulfill a certain criterion (or several criteria) that qualifies to
serve as a selected node. For example, the node’s battery level
or/and its link quality to a destination must be above a certain
threshold value. Second, all candidate nodes compete for
random access on the shared medium (“channel”). The node
that successfully accesses the channel first wins the selection
process and acts as selected node. In wireless systems, the
process typically starts with a query message broadcasted on
the channel. For example, a node asks all its neighbors: “I need
a relay with a bit-error-rate better than 10 —* to the destination.”
Each neighbor fulfilling this criterion tries to gain access to
the channel, to send a positive reply to the querying node. The
node that answers first will act as relay node.

It can be argued [3] that such a first message on the channel
is more important than subsequent reply messages. Thus, from
a MAC layer perspective, the probability of a non-colliding

first message should be maximized, while the collision prob-
ability of later reply messages is less important [3].

This MAC design issue is the topic of this paper. Assuming
slotted ALOHA, we discuss the following issues: What is the
probability that there is a first message that does not collide?
How can we maximize this probability? What is the tradeoff
between this probability and the delay of the selection process?

Section Il gives a formal description of the modeling as-
sumptions and the problem. Section Il derives the probability
of a non-colliding first message and proposes medium access
strategies that maximize this probability. Section IV analyzes
the delay of a first message. Section V addresses related work.

Il. MODELING ASSUMPTIONS AND PROBLEM STATEMENT

Consider a set of n nodes on an uplink channel. The MAC
layer follows a slotted ALOHA scheme without carrier sensing
[4]. All nodes compete for random access to s shared time
slots. Each slot has the same duration 7. The duration of a
message is assumed to fit into one slot.

Let p;; be the probability that node j transmits a message in
slot 4, where j € {1, ... ,n} and i € {1, ... ,s}. We assume
that all nodes behave statistically the same; hence we skip the
index j and write p; := py; V j.

If two or more nodes transmit in the same slot 4, a message
collision occurs, making it difficult for the receiver to decode
any of the sent messages during this slot. If a message does not
suffer from a collision, it is called a non-colliding message.

A slot is empty if no node transmits during this slot. The
first non-empty slot is the slot 7 in which at least one message
is sent while previous slots 1, ...,7—1 were empty. A message
sent in the first non-empty slot is called a first message.

In this paper we discuss three major problems: What is
the probability that, with these modeling assumptions, a non-
colliding first message occurs? How should we choose the
transmission probabilities p; to maximize this probability?
What is the tradeoff between a high probability and a low
delay (an early slot) of a non-colliding first message?

I1l. PROBABILITY OF A NON-COLLIDING FIRST MESSAGE

The number of messages sent in a given slot ¢ can be
described by a random variable M ;. A message sent in slot ¢
does not collide if exactly one node transmits during this slot;
the probability for this event being denoted by P [M; = 1]. A
message sent in slot 4 is the first message to be sent if there
was no message in previous slots; the probability for this event
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is [T, P[M,, = 0] fori > 1. Thus, the probability that there
occurs within s slots a first message that does not collide is

¢(n785p15"'7p8) = (1)

With our assumptions, the probability that & messages are
sent in a given slot 4 is given by the binomial distribution

n

P[Mi—k:]—<k

> P (1= py)" )

with k € {0,...,n}. Combining (1) and (2) yields

¢(na Sy P1y - apS) =
s 1—1
S ( o —pww) pap @
=1 w=0
with po = 0.

A. Same Transmission Probability for Each Jot

We first analyze a scenario where the transmission proba-
bilities are the same for each slot (p; = pVi). Equation (3)
simplifies to

&(n,s,p) = npz (1 —p)m_1
np (L-p)" ' (1-(1
1—(1—=pm

1) General Behavior: Let us discuss the qualitative influ-
ence of the three parameters on the probability ®. Figure 1
plots (4) for selected values of s and n as a function of p.

If the product np is low, it is very likely that no message is
transmitted at all within s slots. Hence, the probability @ is low
for np < 1 (see Figs. 1(a) and (b)). If we increase n or p or
both, the likelihood that no message is transmitted decreases,
which in turn increases ®. For some (n,p)-pairs, ® achieves
a maximum, whose value also depends on s. Increasing n or
p or both further decreases the probability & again, as the
likelihood of message collisions increases. Finally, for very
high np, the value of ® approaches zero. In summary, two
probabilities govern the behavior of ®: the probability that
a (first) message does actually occur within s slots and the
probability that a (first) message collides.

The impact of s for given n is illustrated in Figs. 1(c)
and (d). If only few slots are available, there is a high
likelihood that no message is transmitted, yielding a low .
Increasing s decreases this likelihood and thus leads to a
higher ®. As we increase s further, the no-message-likelihood
approaches zero and the probability ® tends to an asymptotic
limit, whose value depends on n and p.

(c) ®(n,s,p) for n = 5 nodes

(d) ®(n,s,p) for n = 10 nodes

Fig. 1. Each of n nodes transmits with probability p in each of s time slots.
The probability that there is a non-colliding first message is ®(n, s, p).

2) Many Sots. Assuming that there are sufficiently many
slots, such that a first message occurs for sure, yields

n—1
np (1—p) _ 5)
1-(1-p)
Note that this term is equal to the probability that M = 1
message has been sent in an arbitrarily chosen time slot under
the condition that at least one message has been sent in this
slot (M > 1). Furthermore, recall that ®(n,p) is an upper
bound for ®(n, s, p) for s < .

Figure 2 shows some (n, p)-pairs leading to a non-colliding
first message with probability 99 %, 90 %, 80 %, or 50 %.

Example: To achieve a non-colliding first message with a
probability above 90% on a shared channel with n = 10
nodes, each node must access a slot with probability lower than
p = 0.02. If n = 20 nodes are present with the same p, the
non-colliding first message probability decreases to roughly
80 %. To retain a probability of 90 % with n = 20 nodes, the
slot access probability must be decreased to p = 0.01.

3) Many Nodes. If n becomes large while the total traffic
load A\ = np remains constant, we obtain

®(n,p) = lim ®(n,s,p) =

§—00

D(N) = nh_)ngo O(n,p) = e)‘/\—l . (6)

It can be realized by inspection of (6) that if n is increased by
a certain factor, we must decrease p by the same factor—and
vice versa—to keep the same ®(\).
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Fig. 2. Each of n nodes transmits with probability p in each of infinitely
many time slots. The probability of a non-colliding first message is ®(n, p).
The figure shows some points of equal ® (contour lines) in the n/p-plane.

Developing (6) into a series yields ®(\) = 1—1 A+ -L A2
5 A%+ O(A®). This expression is useful for the practically
relevant case if A < 1. It gives us the following rule of thumb:
for large n and small np, the probability for a non-colliding
first message is

D(n,p) =~ 1—%. @)

Example: To achieve a non-colliding first message with a
probability of at least 90 %, the traffic load must be lower than
np = 0.2 (also see Fig. 2).

4) Optimal Transmission Probability: Let us consider again
a scenario with a finite number of nodes n and a finite
number of slots s. In such a scenario, nodes can choose
an optimal transmission probability p, such that the prob-
ability for a non-colliding first message according to (4)
becomes maximum. This transmission strategy is called “slot-
independent optimization strategy” in the following. Using
numerical optimization, we obtain Figure 3(a), showing us the
maximum possible ® that can be achieved for a given (n, s)-
pair. Figure 3(b) shows some contour lines of this plot, namely
the (n, p)-pairs leading to max ® = 98 %, 95%, 90 %, 80 %,
70 %, or 50 %, respectively. Table | gives some examples of
optimal p-values for selected (n, s)-pairs.

TABLE |
TRANSMISSION PROBABILITIES p MAXIMIZING ®(n, s, p). VALUES IN %.

s — 1 2 5 10 20 50 100
In

2 | 50.0 39.42 25.29 16.59 10.29 5.14 294

5 | 20.0 15.35 9.57 6.19 3.82 1.90 1.10

10 10.0 7.62 4.72 3.04 1.87 094 0.54

20 5.0 3.80 2.34 1.51 0.93 046 0.27

50 2.0 1.52 0.93 0.60 0.37 0.18 0.11

100 1.0 0.76 0.46 0.30 0.18 0.10 0.05

Example: On a channel with n = 10 nodes and s = 50 slots,
we can achieve a non-colliding first message with a probability
of at most 95 %. This performance is achieved setting p =
0.94 %; higher and lower p lead to worse performance. If only
s = 10 slots are available, ® can never be more than 83 %.
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(b) Contour lines of max ®(n, s, p)

Fig. 3. On a channel with n nodes and s time slots, each node transmits
with probability p, where p is chosen to maximize the probability ®(n, s, p)
of a non-colliding first message.

On the other hand, s = 10 slots are also sufficient for as many
as n = 100 nodes to yield about the same .

B. Optimizing the Transmission Probabilities for Each Sot

The following questions arise: Can we improve & by
choosing appropriate transmission probabilities p; for each slot
¢ individually? If so, what is a good (or even optimal) strategy
for setting {p1, p2, ...,ps} for given n?

A key observation toward the solution of this optimization
problem is as follows. Let us consider the last time slot
1 = s. The optimum transmission probability for this slot is
independent of previous slots due to the following reasons:

« If a first message was already transmitted in a previous

slot, the last slot is irrelevant anyway.

« If a first message has not been transmitted before, the
system is the same as a system with a single slot (s = 1),
hence has to be optimized in the same way.

This statement can be repeated in an iterative manner for
all slots, starting from the last slot. Choosing an optimal



transmission probability for the second last slot i = s — 1, the
previous (s —2) slots are irrelevant— it is only important that
there is another following slot. Hence, the optimal probability
ps—1 IS the same as for a two-slot channel. In general,
the optimal transmission probability for slot (s — k) with
k €{0,...,s—1} on a channel with s slots is the same as the
optimal transmission probability of the first slot on a channel
with (k+1) slots. In other words, the optimal probabilities for
the last (k¥ + 1) slots on a channel with an arbitrary number
of slots are identical to the optimal probabilities on a channel
with (k + 1) slots.

A consequence from this observation is as follows: To
maximize the overall probability ¢ for given n and given s,
each transmission probability p, can be optimized individually
and independently of the transmission probabilities of other
slots. We start by optimizing the transmission probability of
the last slot, continue with the second last slot, and so on,
until we have calculated all s values.

Let us apply this calculation algorithm using (1). Taking
into account the last slot, it is straightforward to observe that
the transmission probability ps = 1/n maximizes ®(n, s, ps).
Taking into account the second last slot, the probability
® (n, s,ps—1,ps) IS maximized by the transmission probability

Dol = 1 n-1-nom ®)
n n—1—o
with oy = (2=1)".

A general expression for the optimum transmission proba-
bility for slot i = s — k with k € {0,...,s — 1} is not trivial
to derive. Taking the derivates of (1) for higher values of s,
setting them to zero, and analyzing the structure of the results
gives us the following solution.

Theorem 1. Each of n nodes transmits with probability p;
in time slot < € {1,...,s}. The probability that there occurs
a non-colliding first message within s slots is maximal if the
pi-values are set to

1 (n—1)"—nayb

Ps—k = —
Ton (-1~

(@) and the

9)

for all £ € {0,...,s — 1} with oy, =
recursively defined term

By 0 for k=0
B ((n = ].)k_l - Oékflﬂkfl)l_n else

This set of equations enables us to calculate all transmission
probabilities that maximize ® for given n and s.

Example: Consider n = 5 nodes on a channel with s = 10
slots. If we choose the same transmission probability p for
each slot, the maximum achievable ® is 84.05 %, which is
obtained for p = 6.2%. Optimizing the transmission proba-
bility of each slot, i.e., choosing

{3.51 %, 3.86 %, 4.28 %, 4.80 %, 5.48 %,
6.38 %, 7.65 %, 9.57 %, 12.86 %, 20 %}

increases ® to 86.68 %.

. (10)
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Fig. 4. On a channel with n nodes and s time slots, each node transmits
with probability p; in slot ¢, 2 = 1,...,s, where p; is chosen to maximize
the probability ®(n, s, p1,...,ps) of a non-colliding first message.

We observe that the optimal transmission probabilities
correspond to a “slow start strategy”: All nodes transmit
with a very low probability in the first slot, they gradually
increase this transmission probability until they transmit with
probability 1/n in the last slot.

Figure 4(a) shows the maximum possible probability of
a non-colliding first message in the n/s-plane, obtained by
setting the p; values according to (9). Figure 4(b) shows
corresponding contour lines.

Comparing these results with Figure 3(b) shows that a
slow start strategy, optimizing each p; individually, leads to a
(slightly) higher ® for all n» and s than the the slot-independent
strategy, where a transmission probability p is chosen collec-
tively for all slots that maximizes ®. Equivalently, for given
n, fewer slots are needed to achieve the same &.

IV. DELAY OF A NON-COLLIDING FIRST MESSAGE

As observed in the previous section, the probability that
there occurs a non-colliding first message can be increased



by increasing the number of slots and/or using a slow start
strategy. Both measures do not however come for free but have
to be traded off against a longer delay until the first message
actually occurs. This section thus analyzes some stochastic
properties of the slot number of the first message.

Representing this slot number by the random variable D
(“delay™), we are interested in two metrics: What is the ex-
pected delay E [D] of the first message? What is the maximum
delay that can be guaranteed in 90 % of all cases?

Using these metrics, we compare the transmission strategies
from the previous section: (a) the slot-independent optimiza-
tion strategy of Section I11-A4 and (b) the slot-dependent slow
start strategy of Section I11-B.

A. Expected Delay

The ith slot is the first non-empty slot, if at least one
message is transmitted in slot ¢ (M; > 0) and no messages
have been transmitted in all previous slots (M, = 0 for
w=1,...,i—1). The probability for this event is

PD=i]=(1-(1-p)" H (1-pu)"  (10)
with po := 0. The expected delay is then defined by E [D] =
>, iP[D = i] under the condition that at least one message
is actually transmitted.

Let us analyze E [D] for the two transmission strategies, i.e.,
for each (n, s)-pair we always choose (a) the p-value or (b) the
pi-values, respectively, that maximize ®. Figure 5 shows the
normalized resulting expected delay E [D] /s as a function of
s forn = 5,10, and 100 nodes. For the slow start strategy also
the expected delay curve for infinitely many nodes is plotted.

We observe the following behavior:

o The expected delay is almost independent of n. For
the slow start strategy, it can be expressed as E [D] =
wu(s) + e(n,s), where u(s) is the limiting value of the
expected delay as n — oo, and €(n, s) € R is a difference
that is positive for s < 3 and negative for s > 3 and that
tends (quickly) to zero as n becomes large. The difference
between the curves with 100 and infinitely many nodes
is invisible. It can be shown analytically that the limiting
value exists. For the slot-independent strategy, the same
general behavior can be observed. As here the optimal
probabilities are computed numerically, the results are
however no convergence proof for n — oo.

o The expected delay of the slow start strategy is always
higher than that of the slot-independent strategy. For
example, for s = 10 slots, the first message is expected
to occur in the 3rd slot for the slot-independent strategy,
while it is expected to occur at least one slot later using
the slow start strategy.

For the slot-independent strategy, we can again consider the
case of sufficiently many slots. If s — oo, the expected delay is

1

SPI= e

(12)
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Fig. 5. Expected delay of a first message on a channel with n nodes and
s slots. Using the slot-independent strategy (a), each node transmits with
probability p in each slot. Using the slow start strategy (b), each node transmits
with probability p; in slot ¢, where i=1, ..., s. The values p or p; are chosen
to maximize ®.

If n — oo and p — 0 while A = np = const, we get

PD<il=1-¢ and E[D]=

—- (13

B. Probabilistic Maximum Delay

We now ask: Requiring that the maximum delay of a
first message is k, with a probability of at least 90 %,
how small can we choose £? In other words, what is
inf{k e N:P[D < k] > 0.9}? Again, we analyze this ques-
tion in the context of optimizing ®. This problem corresponds
to a system design question in which a certain delay constraint
must be fulfilled, and the optimization goal is to maximize ®.
The special case k& = s requires that at at least one message
is sent with a probability of at least 90 %.

If the same p is used in each slot, the probability that a first
message occurs no later than in the ith slot (i = 1,...,s) is

ZP

w=1

P[D<i]= w=1-—(1-p)™ (14)
Figure 6 shows k/s as a function of s for n = 5,10, and
100 nodes. We observe a similar qualitative behavior as with

the expected delay:

« the maximum delay % is almost independent of n, and
« the slow start strategy has a higher or equal maximal
delay % as the slot-independent strategy.

Furthermore, for low s (say s < 5), the maximum delay is
not lower than the total number of slots, i.e., k/s = 100 %.
If we increase s, the maximum delay can also be decreased
relatively. The zigzag behavior is a consequence of the fact that
a certain value of k usually holds for more than one value of s;
then however, for some s, the value of % has to be increased.

Example: On a channel with s = 20 slots and n = 10
nodes, a first message occurs with high probability (in at least
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Fig. 6. A first message occurs within the first k& time slots with probability
90 %. The transmission strategies intend to maximize & according to Figure 5.

90 % of all cases) within the first 15 slots using the slow start
strategy, and it occurs within the first 13 slots using the slot-
independent strategy.

V. RELATED WORK

The paper [3] also addresses the collision probability of
first messages assuming a node selection protocol in which the
node answering first is selected. The selection process works,
however, differently in that paper. While we assume here that
all nodes fulfilling a certain threshold value with respect to a
selection metric (e.g., battery level, link quality to destination)
have equal chances to access the channel, the goal in [3] is
to select the node that has the best value with respect to a
selection metric. Based on this, the paper [3] tries to find a
good mapping function between the metric and a backoff time,
this time being in general different for each node.

The paper [5] also derives a transmission strategy with the
goal to maximize the probability of a successful first slot
access in a channel with a finite number of slots. The modeling
assumptions are however different, as [5] requires >.7_, p; =
1. This constraint influences the transmission strategy and the
resulting performance. Although a slow start strategy similar
to the one presented here is applied, the p;-values of [5] are
higher; especially, the transmission probability in the last slot,
ps, IS much higher. Our optimization according to (9) can yield
a better success probability than the one in [5]. This holds
e.g. for all parameters of Table | in [5], the main reason for
this performance difference being a high collision probability
in the last slot using [5].

The authors of [6] derive transmission probabilities for
a slotted channel, also suggesting a slow start mechanism.
Instead of maximizing the probability of obtaining a non-
colliding first message, it maximizes the probability of ob-
taining at the end of s slots one selected node (“survivor”)
from a set of n nodes, and uses the result for medium access

contention resolution. Thus, in [6] collisions do not harm as
long as the contention is resolved after s slots.

General work on the analysis of slotted ALOHA from a
MAC layer perspective can be found, for example, in the
landmark papers [4] and [7] as well as in [8] and [9]. These
papers mainly focus on the overall system performance in
terms of throughput and delay. No distinction is made between
first messages and other messages.

VI. CONCLUSIONS AND OUTLOOK

Analyzing message collisions in time-slotted random ac-
cess, we presented a slow start strategy for maximizing the
probability of a non-colliding first message and investigated
the involved collision-delay tradeoff.

The results are relevant to node selection problems, such
as relay and sink selection in wireless systems. They can also
be applied to advanced random access, for instance, when s
slots are used as a contention window, and the node that starts
transmitting first can continue transmitting beyond the s slots.

From this theoretical contribution, various protocol-related
issues arise. Further work is needed on techniques to estimate
the number of nodes n and to distribute the transmission
probabilities p; in an efficient manner.
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