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Abstract— Given is a wireless multihop network whose nodes
are randomly distributed according to a homogeneous Poisson
point process of density ρ (in nodes per unit area). The network
employs Basagni’s distributed mobility–adaptive clustering (DMAC)
algorithm to achieve a self–organizing network structure. We
show that the cluster density, i.e., the expected number of cluster-
heads per unit area, is ρc = ρ

1+µ/2
, where µ denotes the expected

number of neighbors of a node. Consequently, a clusterhead is ex-
pected to incorporate half of its neighboring nodes into its cluster.
This result also holds in a scenario with mobile nodes and serves
as a bound for inhomogeneous spatial node distributions.

Index Terms— Ad hoc networking, sensor networks, self-
organization, clustering, cluster density, leader election.

I. INTRODUCTION

The aim of distributed clustering in ad hoc networks is to dy-
namically organize all mobile nodes into groups, called clus-
ters. The obtained cluster structure provides the basis for a
hierarchical network organization. Although many clustering
algorithms have been proposed in the literature [1–15], only lit-
tle analytical work has been done to obtain a comprehensive
understanding of their behavior [14, 15]. This lack is our mo-
tivation to derive closed–form expressions for the cluster den-
sity and cluster order created by the well–known distributed
mobility–adaptive clustering (DMAC) algorithm [8]. The clus-
ter density is defined as the expected number of clusters per
unit area, and the cluster order is the number of nodes belong-
ing to a cluster. These two values are fundamental design and
performance criteria of any clustering algorithm.

The content of this paper is organized as follows: Section II
reviews the design and communication protocol of the DMAC
algorithm, and shows the uniqueness of the obtained cluster
structure. Section III takes a simulation–based approach to ob-
tain the cluster density in a random ad hoc network. From the
results of these simulations, Section IV deduces a closed–form
expression of general validity. Section V addresses the cluster
order. Finally, Section VI concludes.

II. THE DMAC ALGORITHM

The DMAC algorithm is a promising and yet simple cluster-
ing algorithm suitable for mobile ad hoc networks. It employs
the concept of electing clusterheads among the nodes. Typi-
cally, these clusterheads have special functions, such as main-
taining routing information or creating a “virtual backbone.”
When a node appears in the network, it executes an initializa-
tion process to determine its role, i.e., whether it should create a

new cluster (become a clusterhead) or affiliate with an existing
cluster (become an ordinary node). Each node has a weight w
that determines its chance to become a clusterhead; the larger
the weight of a node, the better it is suited to be a clusterhead.
These weights may be assigned randomly or according to cer-
tain characteristics of the node (e.g., its IP address, transmission
power). We assume that each node has a unique weight, at least
among all nodes within a distance of two hops.

A. Design Rules

Two nodes are denoted as neighbors if they have a direct
wireless link between each other. The number of neighbors of
a node is denoted as its degree d.

A valid cluster structure is defined by three rules [8]: (a) ev-
ery ordinary node has at least one clusterhead as neighbor; (b)
every ordinary node is affiliated with exactly one clusterhead,
namely the neighboring clusterhead that has the largest weight;
and (c) clusterheads must not be neighbors. The first rule en-
sure that each ordinary node has access to a clusterhead using a
single–hop transmission. The second rule ensures that the node
has access to the “best available” clusterhead. The third rule
creates a “well scattered” set of clusterheads. Figure 1 gives an
example of a valid DMAC structure. Figure 2 illustrates some
further examples.
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Fig. 1. Example network with DMAC clustering. The numbers within the
nodes indicate their weights. Clusterheads are shown as squares and ordinary
nodes as circles.



(a) n = 50 with r0 = 0.1a (32 clusters) (b) n = 100 with r0 = 0.1a (42 clusters)

(c) n = 100 with r0 = 0.2a (16 clusters) (d) n = 200 with r0 = 0.1a (49 clusters)

Fig. 2. Example topologies resulting from DMAC clustering on n uniformly distributed nodes on square area of length a.

B. Communication Protocol

Let us now explain how the nodes should act and communi-
cate to achieve a structure that fulfills the DMAC rules [8]. The
role decision of a node is only based on its knowledge about
its neighbors. A new node decides to join a cluster if there is
already a neighboring clusterhead with a weight that is higher
than its own weight; otherwise it decides to become clusterhead
itself. After making this decision, the node informs all its neigh-
bors of its role. It sends out a Join message if it joins a cluster,
or a Clusterhead message if it becomes a clusterhead. The
algorithm is message driven and executed at each node. To re-
act properly and consistently, each node has to know the weight
and role of each of its current neighbors.

Each node reacts to changes in the surrounding neighborhood
and alters its role and cluster membership accordingly. When-
ever a link breaks down between a clusterhead and one of its
member nodes, the clusterhead removes the membership of the
node from its cluster, and the member node must determine its
new role as described above. A new link between two nodes
is handled as follows: If a node notices the presence of a new
neighbor and determines that this new neighbor is a cluster-

head with a larger weight than its current clusterhead, it will
join the new clusterhead. Similarly, if a clusterhead gets a new
neighboring clusterhead with a higher weight, it will give up its
clusterhead role and affiliate with the new neighbor. If a node
receives a Clusterhead message from a neighbor, it has to
check whether it has to affiliate with this neighboring cluster-
head or not. If a clusterhead receives a Join message it has
to check whether the sending node joins its cluster or a differ-
ent cluster. If an ordinary node receives a Join message from
its own clusterhead, it knows that this clusterhead gave up its
role; hence, the ordinary node must re–decide its role and clus-
ter membership.

C. Correctness and Uniqueness of the Steady–State Structure

Using this communication protocol, any multihop network
converges within a finite time interval to a steady–state cluster
structure that fulfills the above design rules [8].

Furthermore, for a given network and given weight assign-
ments, the algorithm always produces the same cluster struc-
ture, independently of the chronology of the nodes’ role de-
cisions, re–decisions, and their messages. A proof for this



uniqueness property can be given by regarding the steady state
of a connected component of the network: The node with the
highest weight of all nodes in this component is always a clus-
terhead. All neighbors of this clusterhead are affiliated with
it. From the remaining nodes, again the node with the highest
weight is a clusterhead, all neighbors have joined it, and so on.
This holds for all connected components.

D. Why DMAC?

The reasons why we have chosen the DMAC algorithm for
our investigations are as follows. First, most of the algorithms
proposed in the early days of ad hoc networking do not al-
low the nodes to move during the initial clustering and are
thus suited for rather static networks. The DMAC algorithm,
however, is designed in a manner that nodes can always move.
Second, the algorithms proposed more recently are much more
complex than the DMAC algorithm. We believe that the mo-
bile and distributed environment of ad hoc networks requires
a rather simple clustering solution that can react to topology
changes very quickly (only by knowing its one–hop neighbors).
Other algorithms (e.g., [3]) require knowledge of all two–hop
neighbors. Another argument for choosing DMAC is its de-
tailed documentation in [8].

III. CLUSTER DENSITY: SIMULATION–BASED APPROACH

This section takes a simulation–based approach to study the
cluster density in a random scenario. We generate a random
network Gi(r0, n) by placing n nodes uniformly on a square
area of size A = a×a and adding links between any two nodes
located within the radio transmission range r0 from each other.
Each node gets a weight sampled from a uniform random distri-
bution. After initial node placement, all nodes remain static and
run the usual DMAC algorithm to determine their roles. Within
a finite time interval, the network converges to a steady–state
and valid cluster structure. Four example topologies with dif-
ferent parameters are given in Figure 2. Once this structure is
achieved, we determine the number ci of clusterheads. Repeat-
ing this experiment over many random topologies (i = 1 . . . Ω,
with large Ω), the mean of the samples {ci}i=1...Ω is an esti-
mate for the expected number of clusters E {C} on the given
area. We also compute the 5% and 95% quantiles of the sam-
ples to obtain a measure for the variance of C.

Figure 3 a shows the result for E {C} over n for three differ-
ent values of r0. We first interpret the impact of the number of
nodes n for fixed r0. For low n, the number of clusterheads in-
creases with increasing n. In this region of the curve, the nodes
are sparsely distributed over the area such that the level of con-
nectivity is low. Several nodes are isolated from other nodes,
thus being clusterheads without any member nodes. Conse-
quently, additional nodes result in more clusterheads. This
behavior changes, however, for large n. Now, the curve lev-
els off because additional nodes typically join existing clus-
ters or force a resignation of existing clusterheads. Finally,
the number of clusters converges toward an asymptotic value
limn→∞ E {C} (n, r0/a) = E {C}∞ (r0/a). In this asymp-
totic case, we obtain a connected continuum of nodes, where
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Fig. 3. Density of DMAC clusters with uniformly distributed nodes. Each
simulation result (each dot) is based on Ω = 30000 random topologies and
was simulated with a = 1000 m. An error bar shows the interval in which
90 % of the measured samples are located (5 % and 95 %–quantiles).

the circular transmission areas of the clusterheads cover the en-
tire system area.1 The qualitative impact of r0 on the number
of clusters is also obvious. The higher r0, the fewer clusters are
produced, and the earlier the curve levels off. This is because
clusterheads with a higher r0 cover a larger area.

Notice that we must be aware of border effects in our results.
Obviously, nodes at the border have a higher isolation probabil-
ity. Hence, although the nodes are uniformly distributed within
the system area, clusterheads are more likely to be found at the
border in a sparsely connected network. Thus, we perform a
second simulation series in which these effects are avoided by
using a cyclic (toroidal) distance model for link formation [18].

1A loose bound for E {C}∞ is given as follows. The number of cluster-
heads in an area is larger than or equal to the minimum number of overlap-
ping circles of radius r0 that cover the entire area. A lower bound for the
latter value is given in [16, 17]. This yields E {C}∞ ≥ # covering circles >⌈

1
33/2

(
2a2

r2
0

+ a
r0

)⌉
.



With this model, nodes close to the border of the simulation area
can establish links across the borderline to nodes located at the
opposite side of the area. We also ensure that a�r0. This setup
approximates a subarea of a network between nodes that are
distributed according to a two–dimensional Poisson point pro-
cess with a constant node density ρ = n/A on an infinite area.

Given this spatial node distribution and the uniform distribu-
tion of the weights among the nodes, it follows that the cluster-
heads are now homogeneously distributed with a constant clus-
ter density ρc given by

ρc = ρc(ρ, r0) =
E {C}

A
. (1)

Figure 3 b shows the corresponding simulation result. In this
case, less clusters per unit area are created, since nodes can
now join clusterheads via the borderline of the area. The curves
again converge toward a value limρ→∞ ρc(ρ, r0) = ρ∞c (r0).

IV. CLUSTER DENSITY: ANALYTICAL APPROACH

From the literature on stochastic point processes, we find out
that the spatial distribution of the DMAC clusterheads belongs
to the family of hard–core point processes [19]. In such a pro-
cess, points are forbidden to lie closer together than a certain
minimum distance. The Matérn hard–core process, for exam-
ple, applies a thinning to a homogeneous Poisson point process
in which a point is only retained if it has the highest weight w
of all Poisson points located within a circle of radius r0 around
its position. The thinned out points are removed after all points
have been classified as either retained or thinned out. There
is a small but important difference to the DMAC clustering:
A clusterhead may indeed have a neighboring (ordinary) node
with a higher weight (see Fig. 1, Nodes 3 and 1). Hence, the
Matérn process gives us only a subset of the set of clusterheads
and yields a lower bound for the clusterhead density. We have
ρc = ρMatérn + ρ′c, with ρMatérn = 1

r2
0π

(
1 − e−ρ r2

0π
)

and ρ′c
being the density of clusterheads that have at least one higher–
weighted neighbor. Although the qualitative behavior of ρMatérn

is the same as the one of ρc, it yields in general only a loose
bound for ρc. Let us therefore take our own approach to give an
equation for ρc.

To do so, we regard the problem from slightly different view-
point. The expected percentage of clusterheads among all
nodes in a random topology, i.e., the probability that a randomly
chosen node is a clusterhead, is given by

P (CH) =
E {C}

n
=

ρc

ρ
. (2)

The key to our solution is to realize that this probability is only
a function of the expected value of a node’s number of neigh-
bors — i.e., the expected node degree E {D}— in the given
scenario. The values for E {D} are (see Appendix A)

E {D} = n
r2
0π

a2

(
1 − 8

3π

r0

a
+

1
2π

r2
0

a2

)
(3)

for a square area, and E {D} = ρ r2
0π for a Poisson point pro-

cess. Using the above simulation results, we can plot P (CH)
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Fig. 4. Probability that a randomly chosen node is a clusterhead

over E {D} as shown in Figure 4. The given curve holds with
and without border effects. Two extreme cases can be easily
understood:

• If r0 = 0, the degree of each node is zero; each node
becomes a clusterhead.

• If n/A → ∞, the expected degree tends to infinity; hence,
the probability of a node to be clusterhead tends to zero.

Furthermore, one out of two nodes becomes a clusterhead if
E {D} = 2. With these observations, a regression function can
be derived that matches exactly the simulation results; we have

P (CH) =
1

1 + E{D}
2

. (4)

This general result enables us to compute the expected number
of clusters E {C} = nP (CH) for different area shapes as long
as we know the expected degree. The cluster density of Poisson
distributed nodes is

ρc =
1

1
2 r2

0π + 1
ρ

; with ρ∞c =
2

r2
0π

. (5)

V. CLUSTER ORDER

Given this insight on the cluster density, we can deduce the
expected number of ordinary nodes E {M} in a randomly cho-
sen cluster (0 ≤ M ≤ n−1). Assuming a homogeneous node
distribution without border effects, each clusterhead has on av-
erage the same number of member nodes. This yields

E {M} =
ρ − ρc

ρc

(5)
=

ρ r2
0π

2
=

E {D}
2

. (6)

Interestingly, the number of nodes that a “typical” clusterhead
incorporates into its cluster is half of its expected total number
of neighbors. The expected cluster order is then E {M} + 1.

Example. Suppose a sensor network is distributed for envi-
ronmental monitoring with a density of n/A = 0.001 m−2 on
an area of dimensions 1000×2000 m2. Each sensor is equipped
with a transceiver capable of transmitting r0 = 90 m. The
DMAC protocol is used to elect clusterheads that have the task
of transmitting the sensed data to a central unit. Each sensor



collects about 8 kbit of data per second. What is the average
transmission load of the clusterheads? With (8) the expected
degree of a sensor is 24. Ignoring border effects each cluster-
head has on average 12 affiliated nodes, which gives a total data
traffic of 96 kbit/s to be transmitted.

The fact that E {M} increases linearly with ρ for fixed r0

is a drawback of the DMAC algorithm with respect to its scal-
ability. As the node density increases, clusterheads might be
overloaded with too many members and become a bottleneck.
An extension that limits the cluster order and allows a split-
ting of an existing cluster into several smaller clusters would be
useful. Such an extension requires us to waive the third DMAC
rule “clusterheads must not be neighbors.” Another possibility
to solve the problem would be that the overloaded clusterhead
automatically reduces its transmission power.

VI. CONCLUDING REMARKS

Using a heuristic approach, this paper gave equations for the
cluster density and cluster order of homogeneously distributed
nodes running the DMAC algorithm. Since the DMAC struc-
ture is unique, the equations also hold in a mobile scenario if
the used mobility model retains the homogeneous distribution
of the nodes (see [20] for a discussion on this topic). If the
nodes are inhomogeneously distributed, the cluster density will
decrease. In fact, the validity of our result is not restricted to
the DMAC algorithm. It also holds for other algorithms that
limit the cluster size to two hops. For example, our simulation
study in [21] shows that the Lin/Gerla clustering algorithm [3]
creates the same cluster density, although it does not employ
the concept of clusterheads.

A topic for future research is the analytical study of algo-
rithms that allow the clusterheads to be more sparsely dis-
tributed [11].
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APPENDIX

The probability density function of the distance S between
two nodes that are independently uniformly distributed (at ran-
dom) in a rectangular area of size A = a × b, a ≥ b, is
fS(s) = 4s

a2b2 f0(s) with [22]

f0(s) =




π
2 ab − as − bs + 1

2s2 for 0 ≤ s ≤ b

ab arcsin b
s + a

√
s2 − b2 − 1

2 b2 − as
for b < s < a

ab arcsin b
s + a

√
s2 − b2 − 1

2 b2−
ab arccos a

s + b
√

s2 − a2 − 1
2 a2 − 1

2 s2

for a ≤ s ≤ √
a2 + b2

0 otherwise

. (7)

The probability that two uniformly distributed nodes, each
having a transmission range r0, are neighbors is therefore given
by the integral P0 =

∫ r0

0
fS(s) ds. Thus, the expected degree

of a node in a network with n � 1 uniformly distributed nodes,
each node with transmission range r0, is E {D} = nP0. This
yields for r0 < b the expression

E {D} =
n r2

0π

ab

(
1 − 4

3π

(r0

a
+

r0

b

)
+

1
2π

r2
0

ab

)
. (8)

Using a square area of size a × a we obtain

E {D} = n r̂2
0π

(
1 − 8

3π
r̂0 +

1
2π

r̂2
0

)
. (9)

with the normalized range r̂0 = r0/a.
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