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Abstract

This paper addresses the topological design of wireless
multihop networks that are robust against node failures.
Given is the following scenario: The nodes are randomly
distributed according to a homogeneous Poisson point pro-
cess of density p, each node has the same transmission
capabilities, and the wireless channel suffers from a log—
normal shadow fading. We investigate the minimum node
density p required to ensure that all nodes inside a ran-
domly chosen area of size A are k—connected with high
probability (ke N). We derive a tight lower bound for this
node density as a function of the channel parameters and
compute it for a number of scenarios. The results give in-
sight into how fading affects the network topology.
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1. Introduction

A fundamental property of each communication net-
work is its connectivity. In cellular systems, it is the opera-
tor’s responsibility to enable communication among users.
It deploys a sufficient number of base stations and main-
tains the access and core networks. This network infra-
structure guarantees, to a certain, extend the connectivity
among mobile users. In contrast to this, the connectivity
in wireless multihop networks (i.e., ad hoc and sensor net-
works) cannot be guaranteed. Each node acts as a relay for
other nodes, thus the level of connectivity depends on the
spatial density and transmission characteristics of the mo-
bile nodes themselves. As the location and mobility of the
nodes are non—deterministic, we can only give probabilis-
tic measures for the connectivity. This stochastic aspect
raises a number of interesting problems, which have been
addressed by several researchers.

Cheng and Robertazzi [1] investigate how far a node’s
broadcast message percolates, assuming that nodes are ran-
domly distributed according to a homogeneous Poisson
point process on an infinitely large area. Piret [2], Gupta

and Kumar [3], Santi and Blough [4, 5], Bettstetter [6-8],
and Desai [9] study the connectivity of a given number of
nodes that are placed on a finite area using a uniform ran-
dom distribution. They analyze how high the transmission
power of the nodes must be such that the network is con-
nected, i.e., there is a communication path between each
pair of nodes. Non—uniform random distributions are ad-
dressed in [8]. Dousse et al. [10] consider Poisson dis-
tributed nodes on an infinite line and give an expression
for the probability that two nodes with a given distance can
establish a multihop path between them.

All these papers have one assumption in common: they
describe the wireless link between nodes with a very sim-
ple channel model. In this model, two nodes are linked to-
gether, if they are not further apart than a certain threshold
distance, the so—called transmission range ry (see Fig. 1 a).
The resulting disk graph model is convenient for analyti-
cal computations and has been a good starting point to un-
derstand the nature of multihop connectivity. We have to
admit, however, that radio links look very different in real-
ity. In particular, the transmission range is not rotationally
symmetric due to shadowing effects and inhomogeneities
of the antenna (see Fig. 1 b).
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(a) Purely geometric model (b) Shadowing fading model

Figure 1. lllustration of link models

A sound analytical study of the connectivity (and other
topology properties) with a more realistic channel model
is still an open issue. Just recently, first steps to obtain a
basic understanding have been made in [11] and [12]. Our



paper [11] studied the following problem: Given a shadow
fading environment, what is the minimum density (nodes
per unit area) of Poisson distributed nodes to achieve a
fully connected network in a subarea of given size. The pa-
per leads to the initially surprising result that a higher fad-
ing variance may help the network to become connected,
i.e., the higher the fading variance, the lower is the node
density required to achieve a connected network. A similar
result has been observed qualitatively in [12] by studying
the existence of an infinite connected component. Here, the
authors conclude that anisotropic radio coverage allows an
infinite connected component to appear at a lower density
than perfect circular coverage does.

The paper at hand extends previous analysis of the above
problem with the following two main contributions:

e Previous work [11] used multi-dimensional numeri-
cal integrals to compute a tight bound for the critical
node density required for connectivity. We now give a
solution that requires no integrals at all. This allows us
to perform a more thorough analysis, since the com-
putational complexity is much lower now.

e We study a network design that is robust against node
failures, i.e., we require that the network is not only
connected but k—connected (k € N), which means that
(k— 1) nodes may fail and the network is still guar-
anteed to be still connected. This issue was already
addressed in [6, 13] but only for the simple geometric
link model.

The remainder of this paper is organized as follows:
Section 2 describes the used network model, including the
model for shadowing. Section 3, addresses the level of
connectivity from the viewpoint of a node. It gives an
equation for the probability density function of the num-
ber of neighbors of a node. Section 4 computes a very tight
bound for the minimum node density p required to achieve
a k—connected network in a given subarea. Several plots
illustrate this density as a function of the link parameters.
Finally, Section 5 concludes and gives ideas for future re-
search.

2. Network Model

2.1. Spatial Node Distribution

The spatial distribution of the nodes is described by a
random point process on an infinite plane. We use a homo-
geneous Poisson process of density p (see Appendix). It
can be regarded as the limiting form of a uniform distribu-
tion of n nodes on an area of size A, as n and A — oo while
the ratio p = n/A remains constant.

2.2. Wireless Link Model

We now define which nodes establish a wireless link be-
tween each other. Let us consider a node that transmits a
signal with power p; and another node that receives this
signal with power p,. The signal is received properly if p,
is larger than or equal to a certain threshold power p,,
which is denoted as receiver sensitivity. We say that the
sender establishes a wireless link to the receiverif p, > p,.sp.
In the following, we assume that all nodes have the same p;
and p,s;. Thus, all links can be considered as being undi-
rected (bidirectional).

The signal attenuation from the sender to the receiver is
defined by = %; it can be expressed in terms of decibel as

B= 1010g10(%) dB. (1)

For given p, and p,;, two nodes can can communicate via
a direct link (i.e., they are neighbors), if the attenuation be-
tween them fulfills 8 < B, with the threshold attenuation

Bin = 101og,0< Pr ) dB. )

rth

We describe the attenuation f as a consequence of two
characteristics of the wireless channel.

2.2.1. Path loss caused by distance

A simple model to describe the wireless channel is to
assume that the received signal value p, falls off propor-
tional to some power o of the distance s from the sending

node, i.e.,
S

pr=(=) " )

I m
The term o denotes the path loss exponent of the environ-
ment, which is typically ranging between 2 and 5. For ex-
ample, we have o ~ 2 in free space and & ~ 3 in an urban
outdoor environment [14]. With this model, the attenua-
tion is s
Bo = o 10log,, (E) dB. @)

Using omnidirectional antennas, a node has links to all
nodes that are currently located within a circle of radius

1

ro = ( P ) m. (5)
Prth

around its position (see Fig. 1 a and 2 a).

2.2.2. Shadow fading

In an environment that contains objects —e.g., build-
ings, cars, walls, furniture—the distance s is no longer



(a) Purely geometric link model
(B, =69dB, 0. =3, 6 =0dB)

(b) Shadow fading link model
(B =69dB, a =3, 6 =4dB)

Figure 2. Network with p =4.375- 107> m~2 on 4000 x
4000m? with ro =200m

sufficient to determine the attenuation. This is because dif-
ferent objects “shadow” the signal in different ways. Thus,
receivers located at the same distance s from the sender
(but at different absolute positions) may experience differ-
ent values for p,. Since the properties of the objects (e.g.,
size, location) are in general unknown, stochastic models
for shadowing are used. Measurements have shown that the
received power p, can be approximated by a log—normal
probability density around a mean given by (3). Converting
this log—normal probability density to dB, yields a normal
probability density. The variation of the attenuation around
Bo is thus described by the random variable 5 with
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The standard deviation ¢ is given in dB; typical values are
up to 10dB [15].

Combining path loss and shadowing, the overall attenu-
ation is given by

B =pPo+Bs indB, @)

where fy is a geometric, purely deterministic component
and B a purely random component. Figure 2b illustrates
an example topology. The area covered by a node is no
longer a circle but could look like in Figure 1b. It is now
possible that: (i) there may be a link between two nodes
that are located more than a distance of ro away from each
other; (ii) there may be no link between two nodes that are
located less than ry away from each other.

3. Number of Neighbors of a Node

This section studies the level of connectivity from the
local viewpoint of a node. We consider the number of
neighbors of a node, which is called its degree d € Ny (ran-
dom variable D). Given the above modeling assumptions,

anode’s degree is Poisson distributed, i.e.,

d
P(D:d):%e*“. )

The expected node degree can be expressed as
w=E{D}=pnr’ ©)
where (adapted from [16]")
r=10"¢4m (10)
with

dB In(10) o /dB\ >
:% and g(%). (11)

The expression In(-) denotes the natural logarithm. The
term r is determined by the transmission characteristics of
the nodes and the channel environment; it can be inter-
preted as the effective transmission range. If there is no
shadow fading, i.e., 6 =0, we obtain with (2) and (5) the
well-known expression y = p77:r(2). If o increases, the ex-
pected degree increases as well. In other words, a higher
fading variance leads to a higher level of connectivity. This
phenomenon occurs because a node looses links to (some)
nodes that are located closer than rg, but in turn establishes
new links to (more) nodes that are located further away
than rg.
The probability that a node has at most d neighbors is

° :M (12)

d
— M
P(D<d)=e E:o ] Pl ,

where I'(a,b) is the incomplete Gamma function I'(a, b) =
(a—1)te™?y4) &, with a€N. The probability that a node
isisolatedis P(D=0) =T (l,u) =e H.

4. The k—Connectivity of a Subarea

4.1. Problem Statement

We now consider a finite subarea A of the system plane.
It physical size is denoted by A = ||A||. The nodes in A are
said to be k—connected (k € N) if for each node pair there
exist at least k node—disjoint paths connecting them. Equiv-
alently, if any (k — 1) nodes fail, the nodes are guaranteed
to be still (1-)connected. Nodes outside of A may act as
relay nodes to connect nodes inside of A.

We are interested in the probability P(k—con) that all
nodes within A are k—connected. More specifically, we

IThe paper [16] uses a slightly different channel model. To obtain
(10) and (11) from the results of Section IV in [16], we have to substitute
ko =0 and k; In(R) = 10alog(s).



would like to know the minimum node density p that is
required to achieve a high probability P(k—con) =99 %. In
the following, we first derive a lower bound for this density
and then show that this bound is very tight in most practical
scenarios.

4.2. A Lower Bound

The event that each node in A has at least k neigh-
bors, i.e., the event that the minimum node degree D, =
minyyede D(node) of the random network in A is at least
k, is a necessary but not sufficient condition for the event
that all nodes in A are k—connected. Hence, for given A,
the critical node density required to achieve a network in
which D,,;, > k is guaranteed with a probability p is a lower
bound for the critical node density required to achieve a k—
connected network with the same probability p. In mathe-
matical notation,

P (P(Dmin = k) = p) < p (P(k—con)=p).  (13)

Let us now compute this bound. The random variable
N represents the number of nodes in A. It is Poisson dis-
tributed per definition with mean A = E {N} = pA. In the
following, we require that many nodes are located in A, say
A > 100. Moreover, we know that each node must have a
very low probability P (D < k) to achieve P(D,;,, > k) close
to one. Given these two assumptions we can state that the
event (12) can be considered to be “almost independent”
from node to node.

If we assume for a moment that the number of nodes in
A is known (i.e., N = n), we can write

P(Dpin >k|N=n)= 14)

~ PD>k"=(1-PD<k-1))".
It denotes the probability that each one of the n nodes in
A has at least k neighbors under the condition that exactly

n nodes are located in A. The unconditional probability
P (Dyin > k) is given by

P(Din > k) = i P(Dyin>k|N=n)P(N=n). (15)
n=1

Simplification of this sum yields

P(Dmin > k) = exp(prP(ng— 1))

C(k,prr?)

As a final step, we solve P(Dyin, > k) =99 % for p. The
results are shown in Figure 3 for four different area sizes
with k = 1,...,4. The impact of the shadowing coefficient
o can be observed in Figures 4 and 5. For increasing o,

a lower density is needed to achieve the same connectiv-
ity, i.e., a higher o helps the network to become connected.
This result holds because our channel model decouples fad-
ing (o) from pathloss (). In a real-world environment, a
higher o typically comes with a higher path loss ¢, which
in turn requires a higher density.

4.3. Tightness Of Bound

The question arises as to the tightness of the lower
bound p (P(Dyin > k) =99%). From previous research,
we know that p (P(Dyin > k) = p) is a very tight bound for

p (P(k—con) = p), if pis close 1, in the following cases:

e if we use a purely geometric channel model (¢ = 0)
and require k—connectivity for arbitrary k (see [6, 8],
based on [17]),

e if we use a shadow fading environment (arbitrary o)
and require pure 1—connectivity (see [11]).

Furthermore, we have observed in [6,8] that the approxima-
tion of p (P(k—con) =99 %) with p (P(Dyin > k) =99 %)
becomes better for increasing k. These effects can be
regarded as threshold effects also known in the theory
of (pure) random graphs without any geometric compo-
nent [18]. Combining these observations implies that
P (P(Dpin > k) =99 %) is also a very tight bound in our

scenario, 1.€.,

p (P(k—con) =99%) = p (P(Dmin > k) =99%) + pe
a7
with pe > 0 and pg/p (P(Dpin > k) =99 %) close to 0.

To verify this conjecture, we perform a number of simu-
lations. For given channel parameters, we tune p to achieve
P(k—con) =99%=+0.01 %, based on the statistical average
of 10000 random topologies and a circular A. The results
are depicted as small circles in Figures 4 and 5; they show
a very good match of analytical and simulation—based val-
ues.

In conclusion, from an engineering perspective, it is suf-
ficient to compute p (P(Dpin > k) =99 %) and use it as a
very tight approximation for p (P(k—con) =99 %).

4.4. Example: k—connectivity of BTnodes

A circular area of size A = 10*m? with pathloss o = 3
and o = 4dB should be covered with Bluetooth sensors
(e.g., BTnodes [19]). What is the required density p such
that the network is 2—connected? A Bluetooth device
has a transmission power p, = 100mW and a sensitivity
pr = 100 uW; this corresponds to 3, = 30dB. Using (10)
and (11), we obtain an effective range of » = 11.0m. With
Figure 3, the required density is p = 0.035m™2, i.e., about
n = 350 devices are needed on the area.
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Figure 3. Critical node density p resulting in P(Dy,, > k) = 99 % of nodes inside area A
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5. Conclusions and Further Work

This paper provides guidelines for the topological “plan-
ning” of robust wireless ad hoc and sensor networks (e.g.,
sensor dust applications [20]). Given the channel and node
transmission characteristics— which are both completely
described by the effective range r, we can compute the node
density p that ensures, with probability close to one, the k—
connectivity of all nodes inside an area of given size.

Knowing that a network is k—connected is especially
beneficial if multipath routing [21] is desired, which helps
to improve the robustness of packet delivery or/and bal-
ances the routing load among the nodes. If full connec-
tivity of the nodes is not a design goal, our results still give
a notion of the “level of connectivity” in the network.

We see two main issues for further research in this field.
First, the results on the node degree can be applied to mes-
sage percolation problems, e.g., to determine the critical
node density that creates a connected component of infi-
nite size. Second, the impact of interferences (as in [22])
should be studied in combination with shadowing. All in
all, the goal of the research community should be to de-
velop a common theory for connectivity and percolation
issues in wireless multihop networks.
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Appendix: Homogeneous Poisson Process

A homogeneous Poisson point process is defined by the
following two properties [23]:

The number of nodes N in each finite subarea A of
size ||A|| = A follows a Poisson distribution, i.e.,

n
P(nnodesinA) = P(N=n) = ’J—‘e*“;n €Np.
n!
(18)
with a mean value E {N} = u = pA.

The number of nodes ; in disjoint (non—overlapping)
areas A;, i € N, are independent random variables, i.e.,

P(Ni =m ANy =myA...ANx=ny) =

=[IPWNi=mn). (19)
i=1

We denote this process as being homogeneous, if p is
constant over the entire infinitely large area. In other words,
the outcome of the random variable N only depends on
the size of the subarea A but not on its particular location
or shape.



