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Abstract—Distributed mobility–adaptive clustering algorithms
are used in multihop ad hoc networks to separate the nodes into
logical groups and build up a hierarchical network architecture.
This paper studies the convergence time and message complexity
of Basagni’s generalized DMAC clustering algorithm. Our results
show how many time steps and signaling messages are typically
needed after a single topology change to re–achieve a stable and
valid cluster structure. Furthermore, we discuss chain reactions
that can occur along a path if certain conditions are fulfilled. Fi-
nally, we regard a mobile scenario in order to analyze (a) the num-
ber of signaling messages per node and time step and (b) the per-
centage of time steps in which the cluster structure is invalid. Our
results give a qualitative insight on the behavior of clustering in
ad hoc networks. In particular, they show that tuning the density
of clusterheads and employing a hysteresis parameter for cluster
changes can significantly improve the performance.

Index Terms— Ad hoc networking, clustering, leader election,
distributed algorithms, sensor networks.

I. I NTRODUCTION

AN ESSENTIAL requirement to achieve scalability in large
networks is the logical separation of network nodes into

groups, so–called “clusters” or “subnets.” Such clustering en-
ables us to set up hierarchies which can be used for address as-
signment, routing, and resource control. Also in large multihop
ad hoc networks, e.g., wireless sensor networks, it is a desirable
feature to obtain a clustered network. It is therefore not sur-
prising that several distributed clustering algorithms have been
proposed in this area during the last few years [1,2].

One promising and yet simple algorithm, calledDis-
tributed Mobility–Adaptive Clustering (DMAC), was presented
by Basagni in [3] and analyzed by Bettstetteret al. in [2,4]. An
extended version of this algorithm, calledGeneralized DMAC
(GDMAC), was proposed in [5, 6]. The paper at hand analyzes
this enhanced algorithm with respect to its convergence time
and message complexity. These two values are fundamental
criteria in the design and performance evaluation of distributed
algorithms. Moreover, this paper makes a contribution to the
fundamental understanding of how distributed clustering algo-
rithms behave in a wireless multihop scenario.

In Section II, we review the basic operation and message
types of the GDMAC algorithm. Sections III and IV present our
simulation results on convergence time and message complex-
ity for a single topology change, namely a new node event. We
analyze (a) how long it takes on average and (b) how many mes-
sages must typically be sent after such an event until a validly

clustered network structure is re–achieved. Section V addresses
the possibility of chain reactions — an undesirable characteris-
tic of the GDMAC algorithm. Section VI considers a scenario
with mobile nodes. Here, we investigate (a) the message com-
plexity and (b) the percentage of time with invalid cluster struc-
tures. Finally, Section VII concludes this paper.

II. N ETWORK MODEL AND CLUSTERING

Given is a wireless multihop network withn uniformly ran-
domly distributed nodes, each with radio transmission ranger0,
on a square system area of sizea × a. Two nodes establish a
wireless link if they are within range of each other. Each node
runs the GDMAC clustering algorithm and exchanges signaling
messages to achieve a clustered network structure. Based on a
node weightw and the weights of neighboring nodes, a node
either becomes aclusterhead or ordinary node. The larger the
weight of a node, the better it is suited to be a clusterhead.

The GDMAC clustering rules are designed in such a manner
that the network converges within a finite time to a valid clus-
ter structure. Such a valid structure is defined by the following
three conditions [5]: (a) every ordinary node joins exactly one
clusterhead; (b) for every node affiliated with a clusterheadCH
(and for every clusterheadCH itself), there is no other neigh-
boring clusterheadCH ′ with weightw(CH ′) > w(CH) + h,
whereh ∈ N0 ; (c) a clusterhead can have up tok neighboring
clusterheads. Figure 1 shows four examples of valid GDMAC
cluster structures. The numbers within the nodes indicate their
weightsw. Clusterheads are shown as squares and ordinary
nodes as circles.

In the following, we explain how the nodes must act such
that the above three conditions are fulfilled. When a node ap-
pears in the network, it executes an initialization process to
determine itsrole, i.e., whether it should become an ordinary
node or clusterhead. This decision is solely based on the local
view of the node. It decides to join a cluster — thus becomes an
ordinary node — if there is already a neighboring clusterhead
with a higher weight; otherwise it decides to become cluster-
head itself. After making this decision, the node informs all its
neighbors of its role. It sends out a JOIN message if it joins
a cluster or a CLUSTERHEAD message if it becomes cluster-
head. The algorithm is message driven and executed at each
node. In order to react properly and consistently, each node
has to know its own weight and role as well as the weight and
role of each of its current neighbors. If the situation occurs that
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Fig. 1. Examples for GDMAC clustering.

a clusterhead has more thank neighboring clusterheads, it in-
forms its neighbors about this invalid cluster structure by send-
ing out a RESIGN(w) message. The value of the parameterw
in this message indicates that all neighboring clusterheadsCH ′

with weightw(CH ′) ≤ w must resign in order to re–achieve a
valid structure.

As the nodes move around, they must decide which cluster
they currently belong to and which role they have. In order
to be adaptive to mobility, each node reacts to changes in the
surrounding topology (e.g., failure of links, appearance of new
links) and adapts its status and cluster membership accordingly.
Whenever a link failure happens between two nodes, both nodes
check if their own role is clusterhead and if the other node be-
longs to its cluster. If this is the case, the clusterhead removes
the other node from its cluster. In case the link of an ordinary
node to its clusterhead fails, the ordinary node must determine
its new role in the same way as it does during initialization.
A new link between two nodes is handled in a similar way. An
ordinary node affiliated with a clusterheadCH remains mem-
ber of this clusterhead as long as there is no neighboring cluster-
headCH ′ with w(CH ′) > w(CH) + h. The same rule holds
for clusterheads: They keep their role as long as the above con-
dition is fulfilled, wherew(CH) now denotes the weight of the
node itself. Using the described procedures, any multihop net-
work can be clustered such that the above three conditions for
cluster validity are fulfilled [3].

Let us briefly discuss the clustering parametersh andk. The
parameterh gives the dynamic clustering a sort of a hystere-
sis effect. Upon initialization, a node joins the clusterheadCH
with the highest weight in its neighborhood. While the topol-
ogy changes, the node switches to other clusterheadsCH ′ ap-
pearing in its radio range. Ifh=0 it must always switch to the
clusterhead that has a higher weight than its current clusterhead.
If h > 0, however, it can keep its old clusterhead even if there
appears a neighboring clusterheadCH ′ with higher weight, as

long asw(CH ′) ≤ w(CH) + h. Thus, a higherh typically
results in fewer cluster changes.

The parameterk controls the spatial density of clusterheads.
If k = 0 any two clusterheads must be at least two hops away
from each other. The RESIGN messages can be skipped in this
case. In the extreme casek → n the network may consist of
clusterheads only. The GDMAC algorithm withh=0 (no hys-
teresis) and/ork = 0 (two clusterheads must not be neighbors)
corresponds to the DMAC algorithm [3].

The reader is referred to [3, 5, 6] for further details about the
GDMAC algorithm. In the paper at hand, the node weightsw
are taken from a uniform random distribution between1 and
80 000. We operate the clustering algorithm in a synchronous
manner. In each time step a node can process all signaling mes-
sages received in the previous time step.

III. C ONVERGENCETIME

Let us first analyze the convergence time of the GDMAC al-
gorithm as a function of the network and clustering parameters.
To do so, we regard a validly clustered network and investi-
gate the consequence of a new node that is randomly placed on
the system area. This single new node event may trigger a re–
clustering of the network. If the new node has a high weight,
it may become clusterhead and its neighboring nodes may join
it. There also exist situations in which these neighbors give up
their clusterhead role. This resignation triggers in turn reactions
of nodes affiliated with the former clusterhead. An example is
given in Figures 1a and b. Fig. 1a represents a valid cluster
structure withn = 8 nodes. A new node with weightw = 6 is
added to the network. This node decides to become clusterhead
since it has no neighboring clusterhead with higher weight. It
sends out a CLUSTERHEAD message which is received by both
neighbors. The node withw = 7 ignores the message, since it
has a clusterhead with higher weight. The node withw = 2,
however, gives up its clusterhead role and joins the new node.
Therefore the node withw=1 has to become clusterhead itself.
Fig. 1b shows the re–clustered structure.

We now study the convergence timeT new
valid that is needed to

re–achieve a valid cluster structure after such a new node event.
We define this convergence time as the number of time steps
from the new node event until all clustering rules are fulfilled
again; no node changes its role or joins a different cluster after-
wards. Our goal is to find out how the network parametersn
andr0 and the clustering parameterk influenceT new

valid. To do
so, we generate a random network topology withn nodes, let
the clustering algorithm run until a valid structure is achieved,
and then add a new node at a random position and measure
the number of time steps until a valid structure is re–achieved.
If the new node joins an existing cluster, only one time step
is needed, i.e., the minimum value ofT new

valid is always1. The
same experiment is repeated for30 000 random topologies, and
the resulting values are averaged to give us the expected con-
vergence timeE[T new

valid].
Figure 2 shows our results on the impact of the number of

nodesn on E[T new
valid]. Let us first look at the curve for trans-

mission ranger0/a = 0.1. Using a network withn = 5 nodes
and adding one node, we need on averageT new

valid ≈ 1.05 time
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Fig. 2. Average conv. timeE[T new
valid]; new node event;h=10 000, k=2.

steps to re–achieve a valid structure. If we increasen, the av-
erage convergence time increases until a maximum of about
E[T new

valid] ≈ 1.24 is achieved forn = 70 . . .100. Increasing
n further, results again in a shorter convergence time. We con-
jecture that this behavior is a consequence of two opponent ef-
fects. On the one hand, the convergence time is long if a new
node becomes a clusterhead. On the other hand, it is also long if
many nodes are affected by the new clusterhead, i.e., if the new
node has many neighbors. For increasing node densityn/a2,
the probability of a new node to become clusterhead is decreas-
ing, whereas the number of affected nodes is increasing. An
additional result of our simulations is that the worst case con-
vergence time wasT new

valid = 7.
What happens if we increase the radio transmission range?

The curves forr0/a = 0.2 and0.3 in Figure 2 show the fol-
lowing behavior: the higher the radio ranger0/a, the sooner
the maximum of the average convergence time is achieved and
the shorter the convergence time is for a large number of nodes.
This is because the higher the range of the new node the smaller
is its probability to become clusterhead.

It seems that the convergence time for new node events is
somehow related to the connectivity of the network. Thus,
in a second experiment, we choose the network parameters
n and r0 such that the resulting random multihop network
is connected with a probability ofP (con) = 95 %. These
(r0/a, n) pairs have been taken from [7]. For example the pairs
(0.44, 20), (0.32, 40), (0.23, 80), (0.207, 100), (0.185, 129)
(0.17,151),(0.120, 313), and (0.1, 455) achieve a connected
network topology with a probability of95 %. The GDMAC
parameters remain unchanged. The result of these simulations
is thatE[T new

valid] remains at aconstant value of 1.12.
In a third experiment, we study the impact of the cluster-

ing parameterk on T new
valid for a network which is connected

with probability P (con) = 95 % (see Figure 3). Compared
to the original DMAC algorithm (k = 0, clusterheads cannot
be neighbors), the introduction of the parameterk reduces the
convergence time. Fork = 3 we obtainE[T new

valid] = 1.11, as
opposed to1.24 for k=0. Valuesk>3, however, do not signif-
icantly reduce the convergence time.

Let us now investigate a second, slightly different definition
of convergence time, namelyT new

stable. We define it as the num-
ber of time steps needed after a new node event until a so–called
stable cluster structure is obtained: each node already deter-
mined its role at this time step, but ordinary nodes may join a
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Fig. 3. Average convergence timeE[T new
valid] over GDMAC parameterk, new

node event;r0/a=0.29, n=50, givesP (con) = 95%; h=10 000.
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Fig. 4. Average conv. timeE[T new
stable], new node event;h=10 000, k=2.

different clusterhead after this time step in order to achieve a
valid structure. Clearly,T new

stable ≤ T new
valid for a given scenario.

If the new node joins an existing cluster, we obtainT new
stable = 0.

Figure 4 shows the expected valueE[T new
stable] overn for fixed

r0/a. In this case, about one time step is needed on average for
convergence of5 + 1 nodes. As the node density increases, the
average number of time steps decreases because the probability
of the new node to become clusterhead is also decreasing. In
fact, it seems that the convergence time falls off exponentially.

IV. M ESSAGECOMPLEXITY

After our analysis of the number of time steps required to re–
establish a stable or valid cluster structure, we now investigate
thenumber of messages that is exchanged between nodes after
a new node event. We define two message complexities: the
number of sent messagesMsent and the number of received
messagesMrec. Again, each point of the simulation results is
based on the outcome of30 000 random topologies.

First, we consider the number of sent messages. We note that
at least one message is sent out by a new node, i.e.,Msent ≥ 1
for any random scenario. Depending on the message type and
the role of neighboring nodes, additional messages from other
nodes may or may not be triggered. Figure 5a shows the ex-
pected valueE[Mnew

sent] overn for fixed range. Starting at low
n, the average number of messages increases until a maximum
of aboutE[Mnew

sent] ≈ 1.5 messages is achieved. Increasing the
node density further, results again in a lower message complex-
ity. This behavior is due to the same two opponent effects as
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Fig. 5. Expected number of (a) sent messagesE[Mnew
sent] and (b) received

messagesE[Mnew
rec ] for new node event;h = 10 000, k = 2.

for the time complexityE[T new
valid], although the maxima are ob-

tained for differentn. Studying the impact of the transmission
range, we can say that higher transmission ranges yield a higher
complexity for lown and lower complexity for highn. Thus, in
another experiment, we choose(r0, n)–pairs such that the con-
nectivity probability isP (con)=95 %. Keeping the clustering
parameters unchanged yields a constant message complexity of
E[Mnew

sent] = 1.4. The maximum number of sent messages in
the latter experiment wasMnew

sent = 38.
We now consider the expected number of received messages

E[Mnew
rec ]. As mentioned above, a new node sends out at least

one message, which is received by a certain number of neigh-
boring nodes. A CLUSTERHEAD message is received by all
neighbors and a JOIN message by a single clusterhead. Clearly,
a higher ranger0/a and/or a higher node densityn/a2 in-
creases the number of receiving nodes. It now depends on
various parameters, how many further messages are triggered
and received by other nodes in the following time steps. Our
simulation–based investigation ofE[Mnew

rec ] yields an interest-
ing result: as shown in Figure 5b,E[Mnew

rec ] increases approxi-
mately linearly with the number of nodesn.

To conclude this section, Figure 6 shows the impact of the
GDMAC parameterh on E[Mnew

sent]. Recall thath > 0 in-
troduces a hysteresis for cluster changes. A node may keep
its current clusterheadCH as long as there is no other clus-
terhead in its range with weightw(CH ′) > w(CH) + h.
Using no hysteresis (h = 0) yields a message complexity of
E[Mnew

sent] ≈ 2.0. Choosingh in the order ofhmax/2 = 40 000
makes the cluster structure much more stable. Thus, the mes-
sage complexity can be significantly reduced: about1.2 mes-
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Fig. 6. E[Mnew
sent] over GDMAC parameterh, new node event;r0/a=0.29,

n=50, k=2.

sages are needed in this case to re–achieve a valid clustering. In
other words, the signaling overhead has been reduced by40 %.
Increasingh further does not result in an additional gain.

V. CHAIN REACTIONS

As we have shown in [4], the usual (non–generalized)DMAC
algorithm [3] has the undesirable property that chain reactions
might occur in certain scenarios. In the worst case, a single
change in the topology forces many nodes along a tree through-
out the entire network to change their roles. The question arises:
does the generalized version of the DMAC algorithm also have
this property? Unfortunately, the answer is “yes.” As shown
in Figure 7, a new node may trigger a re–clustering chain reac-
tion, for instance, if the following conditions are fulfilled: (1)
clusterheads and ordinary nodes appear alternately in the path,
(2) the successor of a node in the path has lower weight than
the node itself and fulfills the GDMAC-h-condition, and (3)
no ordinary node has a clusterhead with higher weight than its
own predecessor in the path. These conditions, however, are
more strict than in the conventional DMAC algorithm. Con-
sequently, a chain reaction occurs with a lower probability.
In addition, a GDMAC chain reaction is limited in length to

min
(⌊

wmax

h+1

⌋
, n

)
links, whereas it can be up ton using the

conventional DMAC.

VI. M OBILE NODES

Finally, we investigate GDMAC clustering in a scenario with
mobile nodes. We analyze (a) the message complexity and (b)
the percentage of time during which a given node has an invalid
cluster structure. The used mobility model is explained in [2],
and a bounce–back behavior at the borders is employed.

Figure 8 shows the averaged number of sent messages
E[Mmobile

sent ] per time step and per node. Both a fixed range
r0/a = 0.1 and range values forP (con) = 95 % have been
simulated. Starting at a low number of nodes, the message
complexity first increases dramatically. As we increasen fur-
ther, the curve levels off and a certain saturation seems to be
achieved. The same qualitative behavior can be observed for
the percentage of invalid time steps, averaged over all nodes
(see Fig. 9).

Finally, Figure 10 shows that increasing the cluster parame-
ter k can significantly reduce the number of invalid time steps.
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(a) Cluster structure before chain reaction
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Fig. 7. Chain reaction triggered by new node with weightw = 340; h = 10,
k = 1; squares are clusterheads.
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Fig. 8. Average value of sent messagesE[Mmobile
sent ] per time step per mobile

node. GDMAC parametersh = 10000, k = 2. Mobility vmax = 0.0075a
per time step, movement each second step.

Using clustering withk = 0 in an almost surely connected net-
work results in an invalid structure for a node during3 % of the
time. Allowing that each clusterhead can havek = 2 neighbor-
ing clusterheads decreases this value down to about1.5 % — a
reduction of50 %. Choosing a higherk does not significantly
improve the performance.

VII. C ONCLUSIONS

This paper investigated the GDMAC clustering algorithm for
wireless multihop networks. Our results can be used to give a
qualitative estimate of the convergence time and signaling load
of this algorithm. To summarize, the average values of both
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Fig. 9. Percentage of time steps with invalid cluster structure for a node. Same
parameters as in Fig. 8.
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parameters seem to scale well for increasingn. Chain reactions
are theoretically possible but with a very low probability. The
GDMAC parametersk andh can be tuned in such a way that
the performance is improved.
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