
On the Message and Time Complexity of a Distributed Mobility–Adaptive
Clustering Algorithm in Wireless Ad Hoc Networks

Christian Bettstetter and Stefan K¨onig

Technische Universit¨at München (TUM), Institute of Communication Networks

D–80290 Munich, Germany, Christian.Bettstetter@ei.tum.de

Abstract—This paper investigates the message and time
complexity of a distributed mobility–adaptive clustering al-
gorithm for wireless ad hoc networks. Such algorithms are
used to dynamically organize the mobile stations of the net-
work into groups and hierarchies. We discuss the reaction
of the distributed algorithm on three types of changes in the
network topology: appearance of new stations, failures of
links, and formation of new links. In our analysis we dis-
cover that a single event may cause a restructuring “chain
reaction” through the network. It occurs along a path that
exhibits certain characteristics. The properties of this path
are derived in this paper. Finally, we set up three design
criteria for the development of good clustering algorithms.

Keywords— Wireless mobile ad hoc networks, net-
work self–organization, distributed algorithms, adaptabil-
ity, adaptive clustering.

I. Introduction and Motivation

Clustering algorithms are applied in communication net-
works to organize all entities into groups and to obtain a
hierarchical network organization. Figure 1 gives an ab-
stract example for clustering, in which 12 network entities
are organized into three clusters and two hierarchy levels.

Such methods are employed e.g. in Internet–based net-
works, cellular networks, and ATM networks using the Pri-
vate Network–to–Network Interface (PNNI). They are also
an essential part in the protocol suite of wireless multi–hop
networks, so–called ad hoc networks. In general, ad hoc
networks do not rely on any fixed network infrastructure
(e.g., base stations). They allow direct, wireless peer–to–
peer communication between the mobile stations, and each
station can act as a router to forward traffic toward its desti-
nation (wireless multi–hop routing). The set of stations or-
ganizes itself in a distributed fashion. The radio technology
Bluetooth, for example, implements a clustering principle in
order to form wireless “piconets” of devices. Clustering in
such highly dynamic and self–organizing wireless networks
is the topic of this paper.

Let us briefly explain the general benefits and drawbacks
of clustering. One of the major goals of a hierarchical net-
work organization is to achieve scalability (see e.g. [1]). If
we used a flat (non–clustered) structure in large networks,
routing tables and location registers would grow to an im-

This work is funded by the German research foundation DFG within the
program AKOM (Adaptability in heterogeous communication networks
with wireless access).

Cluster 2

Cluster 3
Cluster 1

Fig. 1. Clustered network organization and virtual hierarchical topology

mense size. Each router would have to maintain an immense
topology knowledge with relevant characteristics (link ca-
pacities, addresses, etc.). Its memory and processing power
would be exceeded, and table lookup times would increase.

A clustered architecture, however, limits the view of each
network entity to a fraction of the total network (see Fig. 2).
Detailed topology information is only exchanged among lo-
cal cluster members, and aggregated (reduced) information
is distributed between neighboring groups in the higher hi-
erarchy level. This principle reduces the signaling traffic
exchanged between network entities and the information
stored inside them. A clustered organization is also useful
for radio resource management, hierarchical address assign-
ment, and medium access control.

The disadvantage of a clustered network organization is
that additional signaling traffic is needed in order to main-
tain the cluster structure. Moreover, some nodes have addi-
tional work load (processing, aggregation of topology infor-
mation, packet forwarding) and might become a bottleneck
in the system.

Cluster 1

Cluster 2 Cluster 3

Fig. 2. Restricted topology view of ordinary stations in Cluster 1

Several algorithms for clustering have been proposed in
the literature for fixed and mobile communication networks.
The choice of the algorithm for a particular network type
strongly depends on the dynamic nature of the network.
Whereas in fixed networks a centrally organized and rather
static network organization is sufficient, in highly dynamic
ad hoc networks a completely distributed and adaptive clus-
tering protocol is essential. Paper [2] contains a survey of
algorithms proposed for ad hoc networks.



In this paper, we investigate theDistributed Mobility–
Adaptive Clustering(DMAC) algorithm for wireless ad hoc
networks, which has been proposed by Basagni in [3]. We
analyze the message and time complexity of this algorithm.
Both criteria have significant importance for the perfor-
mance of clustering, since they determine the signaling traf-
fic as well as the capability of the algorithm to react to topol-
ogy changes quickly.

The rest of this paper is as follows: Section II introduces
our example network and describes the DMAC algorithm.
In Section III we define our criteria for investigation. Sec-
tion IV presents our results, i.e., the reaction of the cluster-
ing algorithm on changes in the network topology and the
resulting message and time complexity. We consider three
typical events (addition of new network stations, link fail-
ures, and the appearance of new links) and derive design
rules for the development of adaptive clustering algorithms.
Finally, Section V concludes this paper.

II. Example Topology and DMAC Clustering

A. Example Topology and Modeling Assumptions

Figure 3 shows our example network topology that is
used throughout the paper to explain the clustering process.
Mobile stations are represented by nodes. Each node can
be identified by a unique identifieri and has a weightwi

(displayed in brackets). For example, Node 5 has weight
w5 = 8. These weights are needed for the clustering pro-
cess and may be assigned randomly or according to certain
characteristics of the station (e.g., addresses, battery power,
maximum speed).

The wireless links between the stations are represented
as edges between the nodes. Two nodes can communicate
with each other directly, if and only if there is a link between
them. In this paper we only consider bidirectional links, i.e.,
we simply ignore unidirectional links.

8 (1)

3 (2)

7 (5)

4 (9)

5 (8)

2 (4)

6 (3)

1 (7)

Cluster (4)
Cluster (3)

Cluster (7)

Fig. 3. Example network with cluster structure after setup

B. DMAC Clustering

The Distributed Mobility–Adaptive Clustering (DMAC)
algorithm [3], which is subject to evaluation in this paper, is
based on the concept of aclusterhead. This exposed node
acts as a local coordinator within the cluster and can per-
form aggregation of topology information and exchange to
neighboring clusters.

When a node is added to the network, it executes an
initialization process to determine itsrole, i.e., whether it
should become a clusterhead or an ordinary node. This de-
cision is based on the node’s weightwi and the weights of
its neighbors: the larger the weight of a node, the better it is
suited as a clusterhead. It is assumed that each node has a
different weight. A node decides to join a cluster if there is
already a neighboring clusterhead with a higher weight; oth-
erwise it decides to become a clusterhead itself. After mak-
ing this decision, it immediately informs all its neighbors
of its role (by sending out either a JOIN or CLUSTERHEAD

message). The algorithm is executed at each node and is
message driven. In order to react properly and consistently,
each node has to know the following values: its own identi-
fier, weight, and role (if it is already determined), as well as
the identifier, weight, and role (if already available) of each
of its current neighbors.

To meet the requirements of the network, a valid cluster
structure has to be reached after setup and each topology
change. Such a stable condition is defined by the follow-
ing three properties, which must be fulfilled [3]: First, ev-
ery ordinary node has at least one clusterhead as neighbor.
Second, every ordinary node affiliates with the neighboring
clusterhead with the largest weight. And, third, clusterheads
cannot be neighbors.

Fig. 3 shows the resulting DMAC cluster structure of the
example network. Three clusters have formed, and the clus-
terheads are Nodes 4, 7, and 3 (displayed as squares).

Mobility–adaptive clustering in an ad hoc network is a
continuously running online process. As the mobile sta-
tions move around, they must decide to which cluster they
currently belong and which role they have. In order to be
adaptive to mobility, each node reacts to changes in the sur-
rounding topology (e.g., failure of links, appearance of new
links), and it changes its status and cluster membership ac-
cordingly. This decision is based only on the local view of
their neighborhood. Whenever a link failure happens, each
node checks if its own role is clusterhead and if the other
node belongs to its cluster. In this case, the clusterhead re-
moves the node from its cluster. When the link of an or-
dinary node to its clusterhead fails, the ordinary node must
determine its new role in the same way as it does during
initialization. A new link between two nodes is handled in
a similar way. A JOIN message is sent out when the new
neighbor is a clusterhead with higher weight. Otherwise,
the information is ignored since the cluster properties are
still fulfilled. The information that is needed to trigger the
execution of the corresponding procedure, e.g. that a link
failed, is provided by a lower protocol layer. The process-
ing of the JOIN and CLUSTERHEAD messages is performed
by the corresponding ONRECEIVING( ) procedure.

III. Criteria For Investigation and Definition of
Message and Time Complexity

Finding good criteria for performance evaluation of adap-
tive clustering algorithms is not a trivial task, and we pro-
pose the criteria listed in Table I. Let us analyze how the



Table I: Evaluation Criteria for Clustering Algorithms

Message complexity How many signaling messages are needed to form groups and to decide which node becomes
clusterhead?

Time complexity How long does it take the algorithm after a change in the topology to re–achieve a valid
cluster structure?

Load on nodes How does the traffic and processing load on nodes change using a hierarchical organization
(e.g., link state advertisements, route computations, topology aggregation)?

Routing table size and
routing optimality

A hierarchical network representation reduces the number of routing entries (compared to a
flat routing). However, the number of alternative paths available is smaller, and the informa-
tion about remote network areas is vague.

Cluster stability How stable does the clustering algorithms maintain the cluster structure while the network
topology changes?

Level of adaptability How adaptive is the algorithm to changes in the network? Which parameters are adaptive?
Decision speed How much knowledge of its neighbors does a node need to make a decision about its role?
Asynchronous operation Is the algorithm capable of running in an asynchronous way, or does it need synchronization?

DMAC algorithm is rated with these parameters. Concern-
ing adaptability, DMAC reacts to changes in the network
topology due to mobility of nodes and node outages (fail-
ure and recovery). However, it does not change the cluster
size as a reaction to mobility, as the algorithm described in
[4] does. Concerning decision speed, a node must know
the identifier, weight, and role of all itsone–hop neighbors
in order to decide its own role in the cluster structure. Con-
cerning asynchronous operation, we can say that the DMAC
algorithm does not need any time synchronization.

Another important criterion is the cluster stability with
respect to the dynamic behavior of the network. A good
clustering algorithm should be designed to maintain its
cluster structure as stable as possible while the topology
changes [5]. In other words, the algorithm should minimize
the number of node transitions from one cluster to another.
Two types of events must be considered for cluster stability:
(a) election events, i.e., all events in which a node becomes
a clusterhead; and (b)join events, i.e., events in which an
ordinary node, a clusterhead, or a new node affiliates with
a (different) clusterhead [6]. In order to increase the cluster
lifetime and the dwell time of nodes in a cluster, these events
should be minimized. One reason for this design goal is that
each event may trigger a restructuring process of the cluster
structure that causes signaling overhead.

In two other papers, [2] and [7], we have investigated the
stability of DMAC by simulation. The topic of this paper is
the number of signaling messages and the time it takes the
algorithm after such an event to re–achieve a valid cluster
structure. Instead of performing simulations we take an an-
alytical approach, in which we consider isolated topology
change events and investigate the reaction of the clustering
algorithm in detail. We are interested in finding bounds for
the message and time complexity, defined as follows:

Definition 1: We define themessage complexityM of a
distributed clustering algorithm as the number of messages
exchanged between nodes after a change in the topology
until a valid clustering structure is re–achieved. If a node
has several neighbors, a message sent to these neighbors
will increase the message complexity only by one.

Definition 2: We assume discrete time steps, and de-

fine the time complexityT of a distributed clustering al-
gorithm as the number of time steps it takes the algorithm
after a change in the topology to re–achieve a valid cluster-
ing structure. We defineone time stepas the time between
the sending of a message and the complete processing of the
message on the receiver side. This includes the transmission
time over the radio link and the processing time (e.g., updat-
ing of member lists) in the receiver node. This time com-
plexity definition makes only sense for time–synchronized
systems. Although DMAC is capable of operating in an
asynchronous manner, we operate the algorithm here in a
synchronous environment.

IV. Analysis of Message and Time Complexity

Our approach is to consider three fundamental types for
a topology change in an ad hoc network: (1) a new node ap-
pears (e.g., because a mobile station is switched on), (2) a
link between two nodes fails (e.g., because two nodes move
away from each other or the radio propagation characteris-
tics worsen), and (3) a new link between two nodes is estab-
lished (e.g., because two nodes move toward each other).

At the beginning of each section, we consider our exam-
ple network, which gives us a better understanding of how
clustering works. Then, we try to derive general statements
for the message and time complexity.

A. Adding a New Node

A.1 Example Scenario

Let us investigate a scenario in which a new node is added
to our example network of Figure 3. Node 9 with weight
w9 = 6 joins the network with links to Node 1 and 3. It per-
forms an initialization process and checks its neighboring
nodes to determine their role and weight. Since there is no
neighboring clusterhead with higher weight, Node 9 decides
to become clusterhead itself. It informs its one–hop neigh-
bors of the decision by sending a CLUSTERHEAD(9) mes-
sage. Both neighbors receive and process this message in
timestep 1. Node 1 ignores the message, since it has a clus-
terhead with higher weight (Node 4 with weightw4 = 9).



Node 3 is clusterhead but has a lower weight than Node 9.
Thus, it must change its role to become an ordinary node.
It joins the cluster of Node 9 and sends out a JOIN(3,9)
message to all its neighbors (time step 2). On receiving this
message, Node 8 becomes its own clusterhead (see Fig. 4).
Node 1 does not react, since it has a clusterhead with higher
weight. Node 9 enters Node 3 in its list of member nodes.
At this time step, Nodes 9 and 3 belong to Cluster(9); see
Fig. 4. In the third time step, Node 3 receives CLUSTER-
HEAD(8) but ignores it. In summary,M = 3 messages
have been sent inT = 3 time steps.

4 (9)

7 (5)

8 (1)

3 (2)5 (8)

6 (3)

2 (4)

9 (6)

1 (7)

Fig. 4. Clustering structure after adding new node (Node 9)

A.2 General Analysis

With the basic understanding of this example, let us now
try to derive a more general description for the message
and time complexity after the appearance of a new node.
The role decision of the new node and the further process
of the algorithm is determined by the roles and weights of
the neighboring nodes. We denote the number of neigh-
bors of a node, i.e. its degree, asd, and distinguish four
types of neighbors of an ordinary node:dhh clusterhead
neighbors with higher weight,dhl clusterhead neighbors
with lower weight,doh ordinary neighbors that belong to
a clusterhead with higher weight, anddol ordinary neigh-
bors that belong to a clusterhead with lower weight, where
d = dhh + dhl + doh + dol holds.

A trivial case occurs, if a new nodei has no neighbors
(di = 0). It becomes its own clusterhead and sends out
a CLUSTERHEAD message. This process is finished after
T = 1 time step.

If a new node has at least one neighboring node that is
clusterhead with higher weight (i.e., ifdhh > 0), the new
node will send a JOIN message during its initialization pro-
cess. On receiving this message the clusterhead neighbor
with the highest weight adds the node to its member list.
One message (M = 1) and one time step (T = 1) is re-
quired, independent of the total degreed and the roles of
the other nodes (see Table II, second line entry).

Let us now consider cases in which there is no cluster-
head neighbor with higher weight (i.e.,dhh = 0). The new
node sends out a CLUSTERHEAD message and becomes its
own clusterhead.

First, we assume that only ordinary nodes are in the

Table II: Message and Time Complexities for “New Node” Event

Neighbor constellation Role of Complexities
dhh dhl doh dol new node M T

0 0 0 0 cl.head 1 1
�=0 any any any ordinary 1 1
0 0 d 0 cl.head 1 1
0 0 any �=0 cl.head 1 + dol 2
0 �=0 any �=0 cl.head ≥1 + dhl ≥ 2

+dol

neighborhood of the new node, i.e.,dhh = dhl = 0. All
(doh + dol) ordinary neighbors receive the CLUSTERHEAD

message and check whether the new node has a lower or
higher weight than their current clusterhead. Thedol nodes
with lower weighted clusterheads join the new node, and
the new node receivesdol JOIN messages in the second time
step. The former clusterheads also receive these messages
and delete the nodes from their member lists. Ordinary
nodes do not react upon receiving these JOIN messages. In
summary,M = 1 + dol messages are needed. The time
complexity isT = 2 time steps. Thedoh nodes with higher
weighted clusterheads do not react at all to the CLUSTER-
HEAD message of the new node, i.e., we obtainM = 1 and
T = 1 for the special casedol = 0. In a mixed scenario,
the value ofdoh has no influence on message and time com-
plexity, i.e., we obtainM = 1 + dol andT = 2. These
results are again summarized in Table II, line 3–4.

Second, we allow that there is also at least one cluster-
head with lower weight, i.e.,dhl �= 0 while dhh = 0. All
dhl clusterhead neighbors join the new cluster and thusdhl

JOIN messages are needed (in addition to thedol JOIN mes-
sages of the ordinary nodes). If none of thedhl former clus-
terheads has any members, a valid cluster structure is ob-
tained afterT = 2 time steps with a message complexity of
M = 1+dhl +dol. Otherwise (this is the general case), the
JOIN messages are received by the members of the former
clusterheads. Each of them must re–decide its role, either
by joining a different cluster or by becoming a clusterhead.
Thus, in any case, those nodes must send out one further
message, either a JOIN or CLUSTERHEAD (third timestep).
The JOIN messages do not trigger any further process. The
CLUSTERHEAD messages, however, may indeed cause fur-
ther events. Upon receiving a CLUSTERHEAD message,
each node must again re–decide its role and check whether
it should join the new clusterhead.

To sum up, we can say that the number of messages and
the time needed to achieve a valid constellation after the
addition of a new node is strongly dependent on the cur-
rent topology, in particular on the degree and role of the
new node’s neighbors. Because of this fact, only lower
bounds can be derived easily for the general case: at least
1 + dhl + dol messages and one time step is needed. In
this context, we made an interesting observation: In certain
topologies, the appearance of a single node may even cause
a re–clustering chain reaction. This is an undesirable char-
acteristic of the algorithm and is worth deeper investigation.



Adding
Node 94 (52)

3 (22)

6 (31)
5 (5)

2 (12)
1 (17)

Cluster (4)
Cluster (2)

8 (3)

Cluster (8)

7 (4)

4 (52)

3 (22)

6 (31)
5 (5)

2 (12)
1 (17)

8 (3)

7 (4)
9 (73)

Cluster (7)

Cluster (1)

Cluster (5)

Cluster (9)

Fig. 5. Re–clustering chain reaction after adding a node (Node 9)

A.3 Re–clustering Chain Reaction

Figure 5 illustrates how such a chain reaction could look
like in the worst case. The appearance of Node 9 with
weight w9 = 73 causes Node 4 to change its role. As a
consequence of this, almost the entire network is affected:
Nodes 1, 2, 5, 7, 8 must also change their role, and the time
and message complexity is only limited by the number of
nodes on the path of this chain reaction. The chain reaction
proceeds along the path of Nodes 9, 4, 1, 2, 7, and 8. A
more detailed investigation of this phenomenon yields the
following statement:

Proposition: After the appearance of a new node in an ad
hoc network that uses the DMAC algorithm for clustering,
the cluster structure can change along a directed path (chain
reaction), as long as the following conditions are fulfilled:
(1) clusterheads and ordinary nodes must appear alternately
in the path,(2) the successor of a node in the path has lower
weight than the node itself, and(3) no ordinary node has a
clusterhead with higher weight than its own predecessor in
the path.

The chain reaction is triggered, if the new node has a
higher weight than its neighboring clusterhead node. The
length of the chain reaction is also determined by the three
parameters, i.e., the re–structuring path will stop when one
of the conditions is not fulfilled anymore.

Condition 1 is required, since two neighboring ordinary
nodes will stop the chain reaction. Suppose, for example,
the weights of Node 2 and 5 in Fig. 5 are switched, i.e.,
w2 = 5 andw5 = 12. In this case, Node 5 would be the
clusterhead of Node 2, and Node 7 and 8 would form Clus-
ter(7). Conditions 2 and 3 are still fulfilled for the known
path. In the restructuring process, Node 2 would remain an
ordinary node and join Cluster(1). After this JOIN event, no
further messages will be processed. Condition 2 is needed
because only in this case will successor nodes in the path
change their role. We need Condition 3, because a node that
has a clusterheadi with higher weight than its own prede-
cessor clusterheadj in the path will remain member of its
current clusterheadi and thus not produce any further events
(see Table II,dhh �= 0).

Besides this phenomenon and its criteria, our investiga-
tions produce some design goals for the development of
adaptive clustering algorithms.

A.4 Design Criteria

In DMAC, the message and time complexities are very
low for join events, in which a node affiliates with an ex-
isting cluster. Only election events (in which a node be-
comes clusterhead) may cause high complexity. The result-
ing total signaling traffic over time depends on the fact how
frequently a certain event occurs. As we have seen in our
stability analysis in [2], in general, join events occur more
frequently than election events for given simulation param-
eters. These frequently occurring join events produce only
M = 1 signaling message, and a stable and valid structure is
already achieved afterT = 1 time step. On the other hand,
clusterhead elections are costly but occur infrequently.

Design Goal 1: Frequent events (such as join events)
should produce only low signaling effort and a low time
complexity for fast convergence. High signaling effort
and high time complexity should only occur for infrequent
events (such as election events).

Design Goal 2: Clusterheads should be especially stable,
because a change of their role may trigger many other events
with high message and time complexity. It may even cause
a re–clustering chain reaction.

The possibility of having a chain reaction in large parts of
the network due to a local change is an ugly characteristic
of the DMAC algorithm. The strategy for the allocation of
weights to nodes plays an important role here. For example,
a strategy that sets the weight of a node dynamically to its
age (starting withw = 0) would avoid a new node having
neighbors with lower weight. Since thendhl = dol = 0,
the re–clustering for a “new node” event would always be
completed withinT = 1 time step.

Design Goal 3: Reactions to topology changes in a dis-
tributed adaptive clustering algorithm should only be based
on the local knowledge of a node’s neighborhood (e.g.,
1–hop neighborhood). Moreover, they should only affect
the neighborhood of the node (e.g., itsn–hop neighborhood,
where usuallyn > 1). Keep changes local!

This design goal is also motivated by the statement of
McDonald in [4], that clustering in ad hoc networks makes
a large network appear smaller (as in fixed networks), but
even more important it can make a highly dynamic network
appear less dynamic (on a higher hierarchy level).



B. Link Failure

If a link failure is reported from a lower layer protocol,
the current cluster structure has to be checked on its validity.
The two involved nodes will react to the topology change
accordingly.

B.1 Example Scenario

Suppose there is a link failure between Node 1 and
Node 4 in Fig. 3. Node 1 realizes that it no longer has direct
connection to its clusterhead. It thus checks whether there is
a neighboring clusterhead with higher weight than its own.
Since this is not the case, it becomes a clusterhead and sends
out a CLUSTERHEAD(1) message, which is received by
Node 2, 3, and 5. Node 2 decides to join Cluster(1), since
it had a clusterhead with lower weight than that of Node 1
(w7 < w1). It sends out a JOIN(2,1) message. Node 3
also joins Cluster(1), since its own weight is lower than that
of Node 1 (w3 < w1). It sends out a JOIN(3,1) message.
Node 5 ignores the CLUSTERHEAD(1) message. Node 1
adds Node 2 and 3 to its cluster, and Node 7 deletes Node 2
from its member list. Node 8 receives JOIN(3,1) and be-
comes clusterhead. Finally, Node 3 ignores the CLUSTER-
HEAD(8) message of Node 8. The resulting cluster struc-
ture is shown in Fig. 6. In summary,T = 3 time steps and
M = 4 messages are needed.

8 (1)

7 (5)

3 (2)5 (8)

4 (9) 2 (4)

6 (3)

1 (7)

Fig. 6. Clustering structure after link failure

B.2 General Analysis and Recall of Design Criteria

A link failure between different clusters or between any
two ordinary nodes does not cause any messages in the
DMAC algorithm. Since these events may happen very fre-
quently, this design is advantageous, according to Design
Goal 1. DMAC does not allow two clusterheads to be neigh-
bors, so we can also exclude this case from our analysis.
Only link failures between an ordinary node and its cluster-
head trigger a re–structuring process. In this case, only the
ordinary node must actively react to the topology change;
the clusterhead just deletes the node from its member list.
Two cases can be distinguished (see Table III):

If the ordinary node has a neighboring clusterhead with
higher weight (that was located in a different cluster before
the link failed), it will join this cluster. One message and
one time step is needed.

Otherwise, if the node has no neighboring clusterhead
with higher weight, it will become a clusterhead itself. It

Table III: Message and Time Complexities for “Link Failure” Event

Link fails within cluster between Complexities
Node 1 Node 2 M T

ordinary node ord. node 0 0
node with neighboring
cl.head of higher weight

cluster-
head

1 1

ordinary node without
neighboring clusterhead
of higher weight

cluster-
head

≥1+dhl

+dol

≥1

sends out a CLUSTERHEAD message, which is processed
by all d neighbors. The further procedure depends on the
role of these neighbors. The restructuring process is the
same as if a new node becomes a clusterhead (Section IV-A,
complexities in Table II). If we have no information about
the neighboring nodes, only lower bounds for the complex-
ities can be stated.

C. New Link

The last scenario to be investigated is a new link between
two nodes. Such an event may occur when two nodes move
toward each other and reach their transmission range.

C.1 Example Scenario

Let us give an example: A new link between Node 3
(w3 = 2) and Node 7 (w7 = 5) in Fig. 3 is established.
Since both nodes are made aware of the presence of a new
neighbor, they both run the same procedure to process the
new information. Node 7 decides to keep its role as clus-
terhead, since its own weight is higher than the weight
of Node 3 (w7 > w3). Node 3 recognizes Node 7 as
clusterhead with higher weight and, therefore, sends out
a JOIN(3,7) message. Node 7 receives and processes this
message by assimilating Node 3 to its current Cluster(7),
which now consists of the Nodes 7, 2, 3, and 6. On re-
ceiving the JOIN(3,7) message, Node 1 does not react at all,
but Node 8 decides to become a clusterhead itself and sends
out a CLUSTERHEAD(8) message in the second time step.
Node 3 will process this CLUSTERHEAD(8) message, but
will not react because of having a current clusterhead with
a higher weight than that of Node 8. Thus, to summarize, a
valid cluster structure is reached (see Fig. 7) after the send-
ing of M = 2 messages inT = 2 time steps.

C.2 General Analysis and Recall of Design Criteria

Let us now make general considerations about new links.
Four different combinations of the roles of the two involved
nodes are possible (see Table IV).

In case a new link is established between two ordinary
nodes, both of them have their clusterhead and thus ignore
the new link, since the cluster structure is still valid.

If an ordinary node becomes neighbor of a clusterhead
with a weight lower than the weight of its current cluster-
head, the ordinary node decides to stay in its current cluster.
Again, no messages are sent out.



Table IV: Message and Time Complexities for “New Link” Event

New link between Description Complexities
Node 1 (w1) Node 2 (w2) M T

ordinary node ordinary node Nothing happens 0 0
ord. node with clusterhead (w1h) clusterhead (w2 < w1h) Node 1 stays in cluster 0 0
ord. node with clusterhead (w1h) clusterhead (w2 > w1h) Node 1 joins Cluster(2) 1 1

clusterhead clusterhead (w2 > w1) Node 1 joins Cluster(2) ≥1+dom ≥1

7 (5)

3 (2)

8 (1)

5 (8)

4 (9)

6 (3)

2 (4)

1 (7)

Fig. 7. Clustering structure after new link

Another case occurs when the newly neighboring cluster-
head of an ordinary node has a higher weight than its current
clusterhead. The ordinary node sends out a JOIN message
to become a member of the new clusterhead. The latter as-
similates its new member, its former clusterhead deletes the
node from its cluster, and we obtainM = 1 andT = 1.

The last and most complicated case is represented by two
clusterheads that become neighbors. This constellation is
forbidden and must be resolved. The node with the lower
weight, referred to as Node 1 in Table IV (line 4), joins the
cluster of the other node. The JOIN message is also received
by all, saydom, members of the former clusterhead. They
notice that they do not anymore belong to a valid cluster
at this time. This enforces at least one further message in
each member node, namely JOIN or CLUSTERHEAD. The
doh = d1−dom direct neighbors of Node 1 that are assigned
to other clusters do not react. The total number of messages
and time steps needed to reach a valid clustering structure
depend on the number and roles of the former clusterhead’s
members. A similar situation occurred in Section IV-A by
adding a new node which has clusterhead neighbors with
lower weight. Also in this case, only lower bounds can be
derived and chain reactions are possible.

Note that Design Goal 1 is also fulfilled for a new link
event. Very frequent events, such as a new link between two
ordinary nodes, produce very low traffic and are terminated
within at most one time step.

V. Conclusions and Further Work

The theoretical investigations of this paper gave an in-
sight into how clustering algorithms react to topology
changes. We analyzed the message complexityM and time
complexityT of the DMAC algorithm in a wireless ad hoc

network. The complexities for a “new node” event depend
on the role and number of neighbors of the new node. For
some topologies, we were able to derive exact values forT
andM ; for the general case, we could state lower bounds.
We made the interesting observation that a single event may
cause a restructuring “chain reaction” along a path that ful-
fills certain characteristics. These characteristics have been
investigated. The analysis of a “link failure” and “new link”
event yields similar results. Another original contribution of
this paper are three design goals, which can be used for the
development of new algorithms as well as for the evaluation
of existing clustering schemes.

In further research, it will be interesting to carry out in-
vestigations on how to avoid the chain reaction in the algo-
rithm. Moreover, a simulation–based analysis of different
strategies for weight allocation to improve cluster stability
(and thus also message and time complexity) should be per-
formed. First results on the latter topic have been published,
e.g., in [2].

References

[1] L. Kleinrock and F. Kamoun, “Hierarchical routing for large net-
works,” Computer Networks, vol. 1, pp. 155–174, Jan. 1977.

[2] C. Bettstetter and R. Krausser, “Scenario-based stability analysis of
the distributed mobility-adaptive clustering (DMAC) algorithm,” in
ACM Symposium on Mobile Ad Hoc Networking and Computing (Mo-
biHOC), (Long Beach, CA, USA), Oct. 2001.

[3] S. Basagni, “Distributed clustering for ad hoc networks,” inProc.
International Symp. on Parallel Architectures, Algorithms, and Net-
works (ISPAN), (Perth/Fremantle, Australia), June 1999.

[4] A. B. McDonald and T. F. Znati, “A mobility–based framework for
adaptive clustering in wireless ad hoc networks,”IEEE J. on Sel. Areas
in Communications, vol. 17, Aug. 1999.

[5] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless net-
works,” IEEE J. on Sel. Areas in Communications, vol. 15, Sept. 1997.

[6] S. Basagni, “Distributed and mobility–adaptive clustering for multi-
media support in multi–hop wireless networks,” inProc. IEEE Vehic-
ular Techn. Conf. (VTC), (Amsterdam, Netherlands), Sept. 1999.

[7] C. Bettstetter and J. Xi, “Mobility modeling and analysis of adap-
tive clustering algorithms in ad hoc networks,” inProc. European
Personal Mobile Communications Conf. (EPMCC), (Vienna, Austria),
Feb. 2001.


