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Karl Popper Kolleg on

Networked Autonomous Aerial Vehicles
University of Klagenfurt

Klagenfurt, Austria
Email: agata.barcis@aau.at

Christian Bettstetter
Institute of Networked and Embedded Systems

University of Klagenfurt
Klagenfurt, Austria

Email: christian.bettstetter@aau.at

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/SASO.2019.00020

Abstract—We propose a technique for adaptive temporal coor-
dination in multi-agent systems where tasks have to be scheduled
in a decentralized way. It provides three states: synchronized,
splay, and clustered. Due to discretization in time and phase,
the model operates with low signaling effort and is robust in the
presence of delays. We analyze the model through simulations and
demonstrate its feasibility through experiments with small robots.

Index Terms—Synchronization, de-synchronization, tempo-
ral coordination, discrete coupled oscillators, self-organization,
swarm robotics.

I. INTRODUCTION

A. Motivation

Multi-agent systems often require agents to perform actions
in a simultaneous way. For instance, a swarm of robots
performing cooperative stereo vision needs to be synchronized
to achieve good depth resolution. Centralized approaches are
not always applicable, which is why distributed algorithms for
mutual synchronization have been developed. Examples in-
clude extensions and modifications of well-known models for
self-synchronizing coupled oscillators, such as the Kuramoto
model [1] and the Mirollo-Strogatz model [2]. However, in
some cases, synchronization to the same oscillator phase is
not required and even undesirable, but the agents should be in
anti-phase. For example, during a surveillance mission, aerial
robots should fly to a charging station at different times to
avoid congestion. This problem is often solved by planning
algorithms, although self-organizing solutions offer advantages
in terms of robustness, flexibility, and adaptability (e.g., agents
can join and leave the mission at any time).

In some applications, an even more complex temporal be-
havior than anti-phase holds interest. For example, two aerial
robots cooperatively delivering a package should simultane-
ously take off but avoid flying into the warehouse at the time
when another group is inside. Time coordination can also be
used indirectly to manage the behavior of agents. For instance,
splitting of an aerial swarm flying in formation into phase-
dependent clusters could facilitate obstacle avoidance [3].
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In conclusion, there is a need for coordination models that
enable the distributed control of timing and the creation of
temporal patterns, and we propose and evaluate such a model
in this paper. Our approach is based on the well-known concept
of coupled oscillators but also takes into account the practical
particularities for implementation in technical systems, such
as signaling overhead and delays.

Robots are often connected with a wireless network that is
used by multiple programs running on each robot. Temporal
coordination is only one of these programs. An efficient
temporal coordination method should therefore lead to a low
signaling overhead. Models based on permanent information
exchange (e.g., utilizing continuous phase coupling) are not
applicable in practice for such systems.

Wireless communication always introduces delay between
the instants when the message was sent and received. When-
ever a robot receives a phase transmitted by another oscillator,
it will actually receive an outdated value from an unknown
moment in the past. In addition, the more devices that share
the same medium, the higher the communication delays and
usually jitter (variation of delays). Hence, a temporal coordina-
tion model robust against such variable delays would facilitate
the operation of large groups of robots.

B. Related work

Coupled oscillators are extensively studied from the per-
spective of theory (e.g., [4], [5]) and engineering (e.g., sensor
networks [6], radio communications [7], and robotics [8]). The
ultimate goal in these papers is always to achieve synchroniza-
tion, i.e., to align the phases of all oscillators. The opposite —
repulsive coupling of oscillators — is rarely studied. There is
some work on this topic, albeit it is mostly theoretical and
focuses on the coexistence of repulsive and attractive coupling
(see [9], [10]). There is also work on applications, e.g.,
repulsive coupling between clusters of nodes in a network [11].

A generalization of oscillator coupling allowing the forma-
tion of splay or cluster states has been analyzed in theory (see
[12], [13]) and sometimes with potential applications in tech-
nology (e.g., multi-agent systems [14] and networks with
different topologies [15]). Cluster and splay states are often
considered as unwanted equilibria; therefore their stability is
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extensively examined for both continuous coupling [4] and
pulse coupling [16]–[18].

The task of phase discretization has also been considered
in the literature, although the models are either limited to
an arbitrary number of phase levels [19] or they focus on
stochastic interactions between oscillators [20]. Additionally,
these approaches only regard continuous coupling.

Coupled oscillators are also employed in distributed control
algorithms, where not only synchronization but also splay and
cluster states hold interest [21]–[23]. Many approaches focus
on multi-agent systems, they take into account connectivity
(see [24], [25]) or propose discrete time models to permit
the exchange of messages [26]. There is also some work
undertaken to cope with delayed messages [27].

C. Contributions and paper structure

To the best of our knowledge, there is no coupled oscillator
model that enables the formation of synchronized, splay, and
cluster states while also being robust to delays. We contribute
to this topic by introducing a unified temporal coordination
model that is discrete in both time and phase and enables us
to obtain synchronized, splay, and cluster states. Furthermore,
we present a way to put the system off unwanted equilibria, we
verify the model in simulation, and finally demonstrate its fea-
sibility in real-world experiments using small mobile robots.

The remainder of this paper is structured as follows. Sec-
tion II introduces the temporal coordination model. Section III
contains the simulation-based analysis. Section IV presents
experiments with robots, and finally Section V concludes.

II. TEMPORAL COORDINATION MODEL

A. Phase representation

The phase of the j-th oscillator is a sum of two parts:

Φj = φj + θ̂j , (1)

where Φj ∈ [0, 2π). The term φj ∈ [0, 2π
L ) is the oscillatory

part of the phase, which we call the internal clock. The term
θ̂j =

θj
L 2π is a discrete phase value, with phase level θj ∈

{0, 1, . . . , L− 1}, where L is the number of phase levels. The
proposed phase model is presented in Figure 1.

Whenever φj resets, the phase level is incremented by 1 and
a signal communicating the value of θj is sent. The signals are
marked with arrows in Figure 1. Different ways to encode θj
are possible: for example, it can be a single number in a data
message or be represented by the frequency of a simple radio,
audio, or light signal that otherwise contains no data.

This paper focuses on how the oscillators mutually influence
their phase levels, rather than how their internal clocks are
synchronized. It is assumed that the oscillators have equal
natural frequencies ω. Their internal clocks need to be syn-
chronized, which can be achieved by established techniques.
In this work we incorporate firefly synchronization to provide
common time steps ∆T = 1

Lω for updating the phase
levels. We use this method for synchronization because it is
distributed and works well on simple devices. In principle,
other synchronization techniques can also be used.
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Fig. 1: Phase of an oscillator Φj with its components θ̂j and
φj over normalized time. Arrows show the moment a signal is
emitted; the numbers next to them represent the phase level.

B. Phase patterns and their applications

Different applications require different temporal arrange-
ments. We are interested in three of them: the synchronized
state, with all oscillators having the same phase level; the
splay state, with oscillators evenly spaced in the phase domain;
and the cluster state, with oscillators forming evenly-spaced
clusters of equal size in the phase domain. Note that even
though phase levels differ in some states, internal clocks are
not influenced and remain synchronized.

For a given number of oscillators N, the three states can be
described in a unified way by defining the number of clusters
M that oscillators should form: M = 1 for the synchronized
state, M = N for the splay state, and 1 < M < N for the
cluster state. We consider only states with clusters of equal
size, i.e., M | N (M divides N ). Furthermore, we assume
that M |L, which allows maintaining equal distances between
clusters. We call these states M -cluster states.

The proposed model can be generalized, whereby each
oscillator can maintain multiple phase levels with one internal
clock. The multiple phase levels of a single oscillator should
not influence each other but the corresponding levels of other
oscillators. With this approach, a single oscillator can be a part
of multiple patterns at the same time. There should always be
only one internal clock, so all signals will be sent at the same
time, and thus they can be merged in one message.

Let us outline potential applications, one for each state:
1) Synchronized states can be used for agents that act

simultaneously. For example, robots take pictures at the
same moment to assure that the objects are at the same
place in all of the pictures, even if the scene is dynamic.
Later these pictures can be used for image stitching or
reconstruction of three-dimensional scenes.

2) Splay states can be used for agents that perform asyn-
chronous actions. For example, robots send measure-
ments in bundles to a base station in different time
slots to avoid interference. Each robot transmits when
its phase level is equal to 0.



3) Cluster states can be used to split agents into groups
performing actions asynchronously with other groups.
For example, based on the phase levels, robots split
into M groups (those with the same level are in one
group). They can only exchange messages (e.g. pictures
or measurements) when their phase level is 0 to avoid
intergroup interference.

C. Order parameters
A measure of synchrony is the complex order parame-

ter [1]:

reiΨ =
1

N

N∑
j=1

eiθ̂j , (2)

where r is the radius of the centroid of the phases and Ψ
is its angle. The radius reaches its maximum value (r = 1)
in a synchronized state, i.e., when all oscillators have equal
phases. When oscillators achieve a balanced state, their phase
centroid coincides with the point (0, 0) on the complex plane,
and thus the radius reaches its minimal value (r = 0).

Splay and cluster states are special cases of a balanced state.
In order to distinguish them, we use the order parameters of
higher phase harmonics [23]:

rme
iΨm =

1

Nm

N∑
j=1

eimθ̂j , (3)

with m ∈ N and m ≤ M , where the term rm is the radius
of the centroid of the m-th harmonic of phases and Ψm is its
angle. Similar to the first order parameter, if rm = 1

m , the m-
th phase harmonic is synchronized. In the balanced state, its
centroid is rm = 0. In order to achieve the desired number of
clusters, the first M−1 harmonics must be in a balanced state
and the M -th harmonic must be in synchrony (rM = 1

M ).

D. State potential
Based on the order parameter, we define the potential Um

of the m-th phase harmonic similarly as in [23]:

Um =
N

2
Kmr

2
m, (4)

where Km is the coupling strength of the m-th harmonic.
The potential has its minimum in different states: if Km <

0, the potential is minimized if the m-th phase harmonic is
synchronized (rm = 1

m ). For Km > 0, it reaches its minimum
if the m-th phase harmonic is in a balanced state (rm = 0).

The sum of potentials of M harmonics describes the poten-
tial of the M -cluster state [23]:

U (M) =

M∑
m=1

Um. (5)

The first M − 1 phase harmonics must be in a balanced
state and the M -th one must be synchronized. This leads to
the following conditions for the coupling strength: Km > 0
for m < M and KM < 0. In order to achieve the desired M -
cluster state, U (M) needs to be minimized. It reaches its global
minimum if each Um is minimized, and this state corresponds
to the M -cluster state, as proven in [23].

E. Phase control

Gradient control can be used to minimize U (M) of the
system of oscillators with continuous phase [23]:

Φ̇j = ω − 1

N

∂U (M)

∂Φj
. (6)

It results in the coupling function Γ, being a linear combination
of continuous coupling similar to the Kuramoto model for the
first M phase harmonics [23]:

∂U (M)

∂Φj
=

N∑
k=1

Γ(Φkj) =

N∑
k=1

Km

m
sin(mΦkj), (7)

where the phase difference between two oscillators is repre-
sented by Φkj = Φk − Φj . In a similar way, differences of
other variables are represented, e.g., θkj = θk − θj .

For a system with discrete phase and discrete time, we
propose the following model based on the same coupling
function (evaluated for discrete values of θ̂kj): the phase
correction of the j-th oscillator at time instant t is

δθj [t] = δθj [t− 1] +
1

N

N∑
j=1

Γ(θ̂kj [t]). (8)

F. Common time frame

In order to enable the desired coordination, we need to
assure a common time frame for all agents. To achieve this,
each agent maintains an internal clock. Each time that the
phase φj reaches the threshold 2π

L , the j-th agent executes
three actions: first, it updates its phase level θj mod L, by
incrementing it by 1 and applying phase correction rounded
towards zero:

θj [t+ 1] = (θj [t] + 1 + sgn(δθj [t]) · b|δθj [t]|c) mod L; (9)

second, the phase correction is reset δθj [t] = 0, if the rounded
correction was different than 0 (phase level was changed);
and third, the oscillator emits the signal containing its updated
phase level θj [t+ 1].

In order to assure that all updates take place simultaneously
and each oscillator receives the data about others in time
(before the update), internal clocks φ are synchronized using
the firefly synchronization algorithm. In systems of pulse
coupled oscillators, two types of coupling can be used, namely
excitatory or inhibitory. If excitatory coupling is applied, the
oscillator’s phase is slightly increased each time that it receives
a pulse. Inhibitory coupling triggers the opposite reaction,
whereby the phase is slightly decreased.

In case of temporal coordination, if excitatory coupling were
used for each received signal, the oscillator that received an
even slightly delayed message would jump forward. Although
eventually its internal clock would catch up with the rest, it
would cause the change in its phase level (relative to the other
oscillators). This might break the desired pattern. In order
to avoid this, each oscillator employs inhibitory coupling to
adjust its internal clock in the first half of the oscillation cycle
and excitatory in the second half.



In order to make the synchronization of the internal clocks
more resistant to delays, we use a refractory period [28].
During this time, the oscillator does not react to signals; the
phase of the internal clock will not change even if the signal
is received. Despite this, the received value of the phase level
is still stored and used for temporal coordination.

The synchronized signals provide a common time frame to
update and apply phase corrections, assuring that all oscillators
perform it simultaneously. Since the internal clocks might
slightly differ and delays might occur, the signals containing
current phase levels of other oscillators can be received in a
time frame before or after it emits its own signal. In order to
compensate for this, the states of other oscillators are gathered
in the time window [T −0.5∆T, T +0.5∆T ), where T is the
moment when the oscillator reaches the k-th phase level and
emits its signal. The reason for choosing this interval is that in
this window the oscillator is attracted by the k-th phase level
(received signals bring it closer to level k while synchronizing
the internal clock). Once all of the signals are gathered, in
the time instant T + 0.5∆T , the new phase correction δθ is
calculated and can be used to update the phase level at the
end of the oscillation cycle.

This approach makes the time coordination resistant to
delays up to ∆T

2 −τ , where τ is the precision of synchroniza-
tion. The delays exceeding this threshold might have negative
influence on time coordination, as the data contained in the
message might be outdated. Furthermore, the model requires
that the communication is reliable in such a way that there are
only a few message losses.

G. Equilibrium states

A continuous system with the coupling function Γ defined
in (7) has multiple equilibrium points. Only a subset of them
is stable and corresponds to a desired M -cluster state [23].
Other equilibria are unstable in systems with a continuous
phase. For instance, a synchronized state is an equilibrium for
splay and cluster states, as in this state all phase differences
are 0, implying Γ(θ̂kj) = 0 ∀j, k. Note that stable equilibria
points coinciding with discrete phase levels exist if M | L.
Hence, it is possible to achieve an M -cluster state in a
discretized system.

The phase discretization strongly increases the probability
of the system being in one of the equilibria. For example,
consider a system with L = 4 phase levels and N = 2
designated to reach synchrony. If the oscillators start with
random phase levels, there is a 25 % chance that they will start
exactly in anti-phase (θj = θk + L

2 ), which is an equilibrium
for the synchronized state.

The goal of the discretization of the temporal coordination
is to prevent the influence of disruptions (e.g., communication
delays, oscillators imperfections or noise). If the system is in
equilibrium, all interactions cancel out. As a result, there is
no influence that can unbalance the system. Thus, in order
to break the unwanted clusters and equilibria, we introduce
noise η and energy of state E.

1

Fig. 2: Shape of energy function for different sizes of clusters.
−εj denotes minimal energy.

If two oscillators have the same phase level, they are equally
influenced by others and will thus always change their phase
levels in the same moment, even if they should be separated to
achieve the desired state. The role of noise is to slightly variate
interactions between oscillators. In the described example,
noise can cause the oscillators to change their phase levels
in different time steps.

The energy of the state has two tasks, namely stabilizing the
expected state and breaking unwanted clusters or equilibria.
First, it suppresses phase correction (originating from both
noise and interactions between oscillators) of the oscillators
that create clusters of size NC meeting the condition N

M+1 <

NC ≤ N
M . Accordingly, oscillators that form clusters of proper

size (or almost proper if there are still too few oscillators in
the cluster) are more reluctant to change their phase levels.
Therefore, noise and some small deviations of the system’s
state from the desired one will not cause them to change their
phase levels. Second, if the cluster is too large, the energy
amplifies the phase correction, causing the cluster to break. If
the system is in an unstable equilibrium, only noise influences
phase correction. In this case, energy amplifies the noise,
making it easier for oscillators to leave this state. Additionally,
oscillators in significantly too small clusters (NC ≤ N

M+1 ) are
more “eager” to change their phase level and “look for” a
larger cluster. This property is not crucial for achieving the
desired state but speeds up this process. Examples of energy
functions for different cluster sizes are presented in Figure 2.

The energy is used to either suppress or amplify the previous
phase correction. The modified equation of the phase update
considers noise and energy:

δθj [t] = (1 + E) · δθj [t− 1] + η +
1

N

N∑
k=1

Γ(θ̂kj [t]). (10)

H. Constraints

In order to assure that energy and noise have only a limited
impact on the system state, we introduce three constraints:



1) Energy: Phase correction suppression should never be
too strong. Even minimal interactions with other oscil-
lators should eventually lead to changing the phase level.
We assume that the oscillator’s phase level is incorrect
if it is influenced by at least minimal non-zero force of
at least 0.5N other agents. In other words, the largest
correction loss, caused by energy, occurs when correc-
tion approaches 1. Even at this point, the loss should
be lower than half of the minimal non-zero influence.
Thus, we can formulate the energy constraint as:

(1− ε) + 1
2 min

θ̂kj ,

Γ(θ̂kj)6=0

∣∣∣Γ(θ̂kj)
∣∣∣ > 1, (11)

where ε is energy margin, and −ε is the minimum value
of energy, as marked in Figure 2.

2) Noise: If the oscillator is in the desired state (size of
its cluster is proper), the energy should suppress phase
correction sufficiently strongly to prevail noise. As a
result, noise cannot cause an oscillator to change its
phase level if it is not subject to other influences and the
cluster is of proper size. We can formulate it as follows:

(1− ε) + η < 1. (12)

3) Number of phase levels: We consider only the number of
phase levels, such that M | L. Moreover, the condition
L ≥ 3M needs to be fulfilled. Otherwise, for L = M
and L = 2M , the coupling of the M -th harmonic is
only sampled at the points where its value is 0.

Based on the constraints (11) and (12) we can calculate
the minimal energy ε and the maximal value of a random
noise. Moreover, we can determine the number of phase levels
needed to form the desired M -cluster state.

III. SIMULATION-BASED ANALYSIS

A. Setup

The temporal coordination model is tested with a simula-
tion implemented in Python. We focus on the evaluation of
temporal pattern formation with a discretized model.

All oscillators start with uniformly distributed random
phases Φ (both components φ and θ̂ are random) and without
any phase correction δθ = 0. During our tests, the coupling
strength K = 0.25 proved to be the most versatile for different
parameter sets; therefore this value is used in all presented
results. Based on this value, we calculate Km = L

2π · K for
m < M and KM = −0.1 · L2π ·K.

A scaling factor L
2π is used to speed up the convergence. It

assures that if the influence is very high (e.g. sin(θkj) = 1), the
attraction will be sufficiently high for the oscillator to change
its level by more than 1. It is especially useful if the number
of levels is high. For example, if L = 1000, M = 1, N = 2
and in the initial state θ1 = θ2 +250, each oscillator will have
to change its phase level by 125. If the maxθkj

Γ(θkj) = 1,
they would need at least 125 oscillation cycles to meet.

Phenomena related to communication and imperfections
of oscillators are not taken into account. Agents have full

connectivity without delays or packet losses. This leads to
the full knowledge about phase levels of other oscillators and
perfect synchronization of the internal clocks.

B. Results

For each experiment we present a plot showing how the
potential U (M) converges over time. We shift its value by
KMN
2M2 and normalize it, whereby it thus always converges to 0

and has a maximum value of 1, independent of the parameters.
Additionally, we show the phase plots at the beginning, in the
middle, and at the end of the simulation. The values of the
potential in these moments are marked with squares in the
potential plot. In each phase plot, the possible phase levels
are numbered on the angular axis and marked with the lines
of corresponding color. The clusters are marked with circles
filled with the color of their level. The size of the circles and
the numbers next to them indicate the size of clusters.

Figures 3 to 6 show the simulation results for different
parameters, presenting M -cluster states for M ∈ {1, 2, 4, 8}.
We notice that for M = 1 it takes a long time until the first
change in the potential appears. This is caused by the initial
distribution of phase levels, which is close to the balanced
state. In this case, the interactions between the oscillators are
weak, therefore more oscillation cycles are needed to change
this state. This behavior cannot be observed for M > 1
because higher harmonics of phase levels are not balanced
in the initial state.

For all patterns, the closer the system gets to the desired
state, the less dynamic the changes, given that the interac-
tions between oscillators become weaker when the system
approaches the stable state.

The gradient control used in the continuous model would
cause the potential to decrease. In some of the potential
plots (Figures 4a and 5a), occasional growth of potential can
be observed. This can be caused by energy and noise that
breaks an unwanted cluster or equilibrium state. In this case,
the change in one oscillator’s phase level is caused entirely
by noise. Another reason for a potential growth can be the
discretization of the model. For example, a local minimum
of the j-th dimension of continuous potential can be located
between two phase levels. In this case, the j-th oscillator
changes its phase level, moving in the direction of the local
minimum, which in fact causes it to jump to the other side of
the minimum.

In both scenarios, the temporary increase of the potential
can either cause the system to find an optimal way toward the
global minimum of potential, otherwise the oscillator returns
to the previous state if the last change was not desired.

IV. EXPERIMENTS WITH ROBOTS

A. Setup

For a real-world evaluation of the temporal coordination
model, we use a robot swarm platform based on Pololu
Balboa robots. The main computer is a Raspberry Pi 3B+.
It exchanges messages with other robots through a wireless
network, computes the results of the model, and visualizes its
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(b) History of phase level changes. The plots are ordered as follows:
left top, right top, left bottom, right bottom.

Fig. 3: M -cluster state for N = 8, L = 16, M = 1.

phase levels using an RGBW light-emitting diode (LED) strip
attached to the bumpers of the robot. A framework based on
Ansible is used for deployment, starting the experiments, and
downloading the logged data. The robot swarm platform and
deployment framework designed for multi-robot systems were
introduced in [29].

Robots communicate via an IEEE 802.11g network oper-
ating in ad-hoc mode, which enables them to join and leave
the group without any infrastructure. The network is set up
using the built-in wireless card of the Raspberry Pi 3B+. From
the software perspective, the communication is realized in the
ROS 2 framework (Bouncy Bolson release) using the Data
Distribution Service (DDS) communication standard, which
applies a Real-Time Publish Subscribe (RTPS) protocol. In this
work, we use eProsima Fast RTPS. The robots are configured
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(b) History of phase level changes. The plots are ordered as follows:
left top, right top, left bottom, right bottom.

Fig. 4: M -cluster state for N = 8, L = 16, M = 2.

with the best-effort mode with multicast enabled to reduce
communication load.

The robots use the described communication only to ex-
change their phase levels. A robot receives messages from
all robots (its own messages are filtered out, thus not taken
into account, neither for internal clock synchronization nor
for time coordination). The signaling effort depends on the
natural frequency of oscillations. In our experiments, we use
ω = 1

L s−1. This means that each robot sends only one message
per second.

Moreover, the robots know neither the total number of
agents nor the number of agents with the same phase level.
For an update of phase correction and energy, the number
of the messages received during the last oscillation cycle was
assumed to be the number of oscillators and the data contained
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(b) History of phase level changes. The plots are ordered as follows:
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Fig. 5: M -cluster state for N = 12, L = 16, M = 4.

in these messages was used to count the number of agents
with the same phase level. Therefore, if many messages are
delayed or missing, it can have an impact on the convergence
and stability of the desired pattern.

Although mobility is not exploited in this work, the use
of a robot swarm is motivated by the possibility of testing
temporal coordination in an environment similar to the one
that it will be applied in, i.e., with the same main computer and
communication capabilities. Additionally, the robots will allow
us to make demonstration of the model visually appealing, for
example, by representing internal clock synchronization with
a swinging movement of robots, similar to our video about
firefly synchronization of a robot swarm [30].
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(b) History of phase level changes. The plots are ordered as follows:
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Fig. 6: M -cluster state for N = 8, L = 24, M = 8.

B. Results

The experimental results are shown in Figures 7 to 9. They
are presented in a similar way as the simulation results aside
from the fact that the phase plot is only shown for the final
state, and a snapshot of the robots with lights representing
their phase level is given for each pattern.

Again, we observe an occasional increase of the potential,
now due to packet losses in addition to previously described
reasons. Although short disruptions of potential occur, the
system recovers and converges to the desired state.

During the experiment, we measure the accuracy of internal
clock synchronization, defined as a maximum difference be-
tween their phases. Although synchronization of the internal
clocks is not the focus of this work, we use its poor precision
to present the link quality and show that the time coordination
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Fig. 9: Experiment results: M -cluster state for N = 8, L = 24, M = 8.



model does not require precise synchronization. The results
show that the accuracy sometimes drops to 40 ms, which
suggests that the link quality varies over time and significant
delays occur. Despite these disturbances, our temporal coordi-
nation model leads to the desired states.

V. CONCLUSIONS AND OUTLOOK

We have introduced a distributed and adaptive model for
temporal coordination in multi-agent systems and demon-
strated that three intended states emerge: synchronized, splay,
and cluster states. There are many uses for these patterns in
multi-robot systems, e.g., to share a communication medium
or split robots into groups for task assignment. The model
was tested with mobile robots, showing that time and phase
discretization enables the system to converge to a desired state
even in the presence of delays.

Future work may involve optimizing of the convergence
time for specific patterns and further reducing the number of
messages that need to be exchanged to establish and maintain
temporal coordination. The model will be used on aerial robots
to support the coordination required in 3D reconstruction tasks.
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